IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i3p396-405.html
   My bibliography  Save this article

Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau

Author

Listed:
  • Lin Zhao
  • Defu Zou
  • Guojie Hu
  • Erji Du
  • Qiangqiang Pang
  • Yao Xiao
  • Ren Li
  • Yu Sheng
  • Xiaodong Wu
  • Zhe Sun
  • Lingxiao Wang
  • Chong Wang
  • Lu Ma
  • Huayun Zhou
  • Shibo Liu

Abstract

Permafrost on the Qinghai–Tibet Plateau (QTP) has undergone degradation as a result of recent climate change. This may alter the thermo‐hydrological processes and unlock soil organic carbon, and thereby affect local hydrological, ecological, and climatic systems. The relationships between permafrost and climate change have received extensive attention, and in this paper we review climate change for permafrost regions of the QTP over the past 30 years. We summarize the current state and changes in permafrost distribution and thickness, ground temperature, and ground ice conditions. We focus on changes in permafrost thermal state and in active‐layer thickness (ALT). Possible future changes in ground temperature and ALT are also discussed. Finally, we discuss the changes in hydrological processes and to ecosystems caused by permafrost degradation. Air temperature and ground temperature in the permafrost regions of the QTP have increased from 1980 to 2018, and the active layer has been thickening at a rate of 19.5 cm per decade. The response of permafrost to climate change is not as fast as in some reports, and permafrost degradation is slower than projected by models that do not account for conditions deep in permafrost.

Suggested Citation

  • Lin Zhao & Defu Zou & Guojie Hu & Erji Du & Qiangqiang Pang & Yao Xiao & Ren Li & Yu Sheng & Xiaodong Wu & Zhe Sun & Lingxiao Wang & Chong Wang & Lu Ma & Huayun Zhou & Shibo Liu, 2020. "Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 396-405, July.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:3:p:396-405
    DOI: 10.1002/ppp.2056
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2056
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. J. Lunardini, 1996. "Climatic warming and the degradation of warm permafrost," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 7(4), pages 311-320, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Lin, Shan & Wang, Genxu & Hu, Zhaoyong & Sun, Xiangyang & Song, Chunlin & Huang, Kewei & Sun, Juying & Yang, Yi, 2023. "Contrasting response of growing season water use efficiency to precipitation changes between alpine meadows and alpine steppes over the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:3:p:396-405. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.