IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i3p415-434.html
   My bibliography  Save this article

The vehicle‐routing problem with delivery and back‐haul options

Author

Listed:
  • Shoshana Anily

Abstract

In this article we consider a version of the vehicle‐routing problem (VRP): A fleet of identical capacitated vehicles serves a system of one warehouse and N customers of two types dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to the warehouse, or both. The objective is to design a set of routes of minimum total length to serve all customers, without violating the capacity restriction of the vehicles along the routes. The capacity restriction here, in contrast to the VRP without back hauls is complicated because amount of capacity used depends on the order the customers are visited along the routes. The problem is NP‐hard. We develop a lower bound on the optimal total cost and a heuristic solution for the problem. The routes generated by the heuristic are such that the back‐haul customers are served only after terminating service to the delivery customers. However, the heuristic is shown to converge to the optimal solution, under mild probabilistic conditions, as fast as N−0.5. The complexity of the heuristic, as well as the computation of the lower bound, is O(N3) if all customers have unit demand size and O(N3 log N) otherwise, independently of the demand sizes. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:3:p:415-434
    DOI: 10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199604)43:33.0.CO;2-C?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Haimovich & A. H. G. Rinnooy Kan, 1985. "Bounds and Heuristics for Capacitated Routing Problems," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 527-542, November.
    2. Richard M. Karp, 1977. "Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 209-224, August.
    3. Mosheiov, Gur, 1994. "The Travelling Salesman Problem with pick-up and delivery," European Journal of Operational Research, Elsevier, vol. 79(2), pages 299-310, December.
    4. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    5. S. Anily & A. Federgruen, 1990. "A Class of Euclidean Routing Problems with General Route Cost Functions," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 268-285, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    2. Tao Zhang & W. Art Chaovalitwongse & Yuejie Zhang, 2014. "Integrated Ant Colony and Tabu Search approach for time dependent vehicle routing problems with simultaneous pickup and delivery," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 288-309, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoshana Anily & Julien Bramel, 2004. "A probabilistic analysis of a fixed partition policy for the inventory‐routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 925-948, October.
    2. Carlos F. Daganzo & Karen R. Smilowitz, 2004. "Bounds and Approximations for the Transportation Problem of Linear Programming and Other Scalable Network Problems," Transportation Science, INFORMS, vol. 38(3), pages 343-356, August.
    3. Awi Federgruen & Michal Tzur, 1999. "Time‐partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot‐sizing problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 463-486, August.
    4. Shoshana Anily & Julien Bramel, 1999. "Approximation algorithms for the capacitated traveling salesman problem with pickups and deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(6), pages 654-670, September.
    5. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    6. Carlos Daganzo & Karen Smilowitz, 2006. "A note on asymptotic formulae for one-dimensional network flow problems," Annals of Operations Research, Springer, vol. 144(1), pages 153-160, April.
    7. David Simchi-Levi, 2014. "OM Forum —OM Research: From Problem-Driven to Data-Driven Research," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 2-10, February.
    8. Awi Federgruen & Joern Meissner, 2004. "Probabilistic Analysis of Multi-Item Capacitated Lot Sizing Problems," Working Papers MRG/0004, Department of Management Science, Lancaster University, revised Apr 2005.
    9. Park, Hyeongjun & Park, Dongjoo & Jeong, In-Jae, 2016. "An effects analysis of logistics collaboration in last-mile networks for CEP delivery services," Transport Policy, Elsevier, vol. 50(C), pages 115-125.
    10. Salazar-González, Juan-José & Santos-Hernández, Beatriz, 2015. "The split-demand one-commodity pickup-and-delivery travelling salesman problem," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 58-73.
    11. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    12. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1979. "Complexity Of Vehicle Routing And Scheduling Problems," Econometric Institute Archives 272191, Erasmus University Rotterdam.
    13. Dereniowski, Dariusz & Kubiak, Wiesław, 2020. "Shared processor scheduling of multiprocessor jobs," European Journal of Operational Research, Elsevier, vol. 282(2), pages 464-477.
    14. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    15. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    16. Yuanxiao Wu & Xiwen Lu, 2022. "Capacitated vehicle routing problem on line with unsplittable demands," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1953-1963, October.
    17. Herer, Yale T., 1999. "Submodularity and the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 489-508, May.
    18. Inge Li Gørtz & Marco Molinaro & Viswanath Nagarajan & R. Ravi, 2016. "Capacitated Vehicle Routing with Nonuniform Speeds," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 318-331, February.
    19. Arild Hoff & Arne Løkketangen, 2006. "Creating lasso-solutions for the traveling salesman problem with pickup and delivery by Tabu search," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(2), pages 125-140, June.
    20. J-F Chen & T-H Wu, 2006. "Vehicle routing problem with simultaneous deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 579-587, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:3:p:415-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.