IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v1y2011i1p58-71.html
   My bibliography  Save this article

The potential of aquatic biomass for CO 2 ‐enhanced fixation and energy production

Author

Listed:
  • Angela Dibenedetto

Abstract

In this review, the use of micro‐ and macroalgae to fix CO 2 and produce energy is discussed. The fixation of CO 2 into aquatic biomass is an option which has recently come under intensive investigation as it can be utilized to stimulate the growth of seaweed or microalgae. Aquatic biomass has long been cultivated and used at industrial level as a source of chemicals (agar, alginate, carragenans, and fucerellans) or as food for humans or animal feed. Recent interest in its use as a source of biofuels is due to the need to shift from first‐generation biofuels (biodiesel and bioethanol produced from edible biomass) to non‐food sources that may grow without the use of arable land. Aquatic biomass can be grown in salty water or fresh wastewater (municipalities or process water) or else in bioreactors to produce different fuels such as bio‐oil, biodiesel, bioalcohol, biohydrogen. Biogas can be produced from residual biomass after liquid fuel extraction. Microalgae are attracting much attention as they are photosynthetic renewable resources, with high lipid content and faster growth rate than terrestrial plants; they can grow in saline waters which are not suited for agriculture. While the lipid content of microalgae on a dry cellular weight basis usually varies between 20 and 40%, a lipid content as high as 85% has been reported for selected microalgal strains. They can be easily manipulated through physical stress or genetic engineering. They can also produce bioethanol. The barrier to their exploitation is the high cost (up to 5000 US$/t) of growth and processing. Seaweeds produce less biofuel per t‐dry weight, but their growing and processing costs are much lower. In perspective, aquatic biomass can become an interesting and ubiquitous source of energy. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Angela Dibenedetto, 2011. "The potential of aquatic biomass for CO 2 ‐enhanced fixation and energy production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(1), pages 58-71, March.
  • Handle: RePEc:wly:greenh:v:1:y:2011:i:1:p:58-71
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:1:y:2011:i:1:p:58-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.