IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i5ne2677.html
   My bibliography  Save this article

Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment

Author

Listed:
  • Maria A. Sans‐Fuentes
  • Walter W. Piegorsch

Abstract

Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. This article extends the single‐dose BMD paradigm to a mixed‐factor setting with a secondary qualitative factor possessing two levels. With focus on quantal‐response data and using a generalized linear model with a complementary‐log link function, we derive expressions for BMD and BMDL. We study the operating characteristics of six different multiplicity‐adjusted approaches to calculate the BMDL, using Monte Carlo evaluations. We illustrate the calculations via an example dataset from environmental carcinogenicity testing.

Suggested Citation

  • Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2677
    DOI: 10.1002/env.2677
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2677
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    2. Walter W. Piegorsch & Lingling An & Alissa A. Wickens & R. Webster West & Edsel A. Peña & Wensong Wu, 2013. "Information‐theoretic model‐averaged benchmark dose analysis in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 143-157, May.
    3. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    4. Roland C. Deutsch & Walter W. Piegorsch, 2012. "Benchmark Dose Profiles for Joint-Action Quantal Data in Quantitative Risk Assessment," Biometrics, The International Biometric Society, vol. 68(4), pages 1313-1322, December.
    5. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    6. Lelys Bravo Guenni & Susan J. Simmons & R. Webster West & Walter W. Piegorsch & Edsel A. Peña & Lingling An & Wensong Wu & Alissa A. Wickens & Hui Xiong & Wenhai Chen, 2012. "The impact of model uncertainty on benchmark dose estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 706-716, December.
    7. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    8. Antonio Canale & Daniele Durante & David B. Dunson, 2018. "Convex mixture regression for quantitative risk assessment," Biometrics, The International Biometric Society, vol. 74(4), pages 1331-1340, December.
    9. Naha J. Farhat & Edward L. Boone & David J. Edwards, 2020. "A new method for determining the benchmark dose tolerable region and endpoint probabilities for toxicology experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(5), pages 775-803, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    3. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    4. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    5. Lizhen Lin & Walter W. Piegorsch & Rabi Bhattacharya, 2015. "Nonparametric Benchmark Dose Estimation with Continuous Dose-Response Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 713-731, September.
    6. Katsuyuki Murata & Esben Budtz‐Jørgensen & Philippe Grandjean, 2002. "Benchmark Dose Calculations for Methylmercury‐Associated Delays on Evoked Potential Latencies in Two Cohorts of Children," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 465-474, June.
    7. Zi-Fan Yu & Paul J. Catalano, 2005. "Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case," Biometrics, The International Biometric Society, vol. 61(3), pages 757-766, September.
    8. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    9. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
    10. Kenny S. Grump & Tord Kjellström & Annette M. Shipp & Abraham Silvers & Alistair Stewart, 1998. "Influence of Prenatal Mercury Exposure Upon Scholastic and Psychologica Test Performance: Benchmark Analysis of a New Zealand Cohort," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 701-713, December.
    11. Kristi Kuljus & Dietrich Von Rosen & Salomon Sand & Katarina Victorin, 2006. "Comparing Experimental Designs for Benchmark Dose Calculations for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 1031-1043, August.
    12. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    13. Matthew W. Wheeler & Todd Blessinger & Kan Shao & Bruce C. Allen & Louis Olszyk & J. Allen Davis & Jeffrey S Gift, 2020. "Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1706-1722, September.
    14. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    15. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    16. Jessica Kratchman & Bing Wang & John Fox & George Gray, 2018. "Correlation of Noncancer Benchmark Doses in Short‐ and Long‐Term Rodent Bioassays," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 1052-1069, May.
    17. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    18. Matteo Goldoni & Maria Vittoria Vettori & Rossella Alinovi & Andrea Caglieri & Sandra Ceccatelli & Antonio Mutti, 2003. "Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 505-514, June.
    19. Hoda Izadi & Jean E. Grundy & Ranjan Bose, 2012. "Evaluation of the Benchmark Dose for Point of Departure Determination for a Variety of Chemical Classes in Applied Regulatory Settings," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 830-835, May.
    20. Keiko Kubo & Kazuhiro Nogawa & Teruhiko Kido & Muneko Nishijo & Hideaki Nakagawa & Yasushi Suwazono, 2017. "Estimation of Benchmark Dose of Lifetime Cadmium Intake for Adverse Renal Effects Using Hybrid Approach in Inhabitants of an Environmentally Exposed River Basin in Japan," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 20-26, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:5:n:e2677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.