Advanced Search
MyIDEAS: Login to save this article or follow this journal

Misclassified Treatment Status and Treatment Effects: An Application to Returns to Education in the United Kingdom

Contents:

Author Info

  • Erich Battistin

    (University of Padova and IRVAPP)

  • Barbara Sianesi

    (Institute for Fiscal Studies)

Abstract

We study the impact of misreported treatment status on the estimation of causal treatment effects, focusing on applications where no additional information or repeated measurements are available. We first characterize the bias introduced by misclassification on the average treatment effect on the treated (ATT) under a conditional independence assumption, in both a binary and a multiple-treatment setting. We find that the bias of matching-type estimators computed from misclassified data cannot in general be signed. We subsequently provide easily implementable methods to bound the ATT of interest semiparametrically, in particular allowing for very general forms of impact heterogeneity and of the no-treatment outcome equations, as well as for some dependence of the misreporting probabilities on individual characteristics. The empirical problem that motivates our paper is the estimation of the wage returns to a number of educational qualifications in the United Kingdom, allowing for misreporting in attainment. We investigate the sensitivity of the raw estimates to the presence of misclassification and explore the identification power of plausible restrictions on the nature and extent of misclassification. We show that the resulting bounds are sometimes wide but generally point to reasonable ranges of positive values for average returns to schooling among the schooled. For the range of educational qualifications considered, we further show that the claim sometimes made that measurement error bias roughly cancels out selection bias is not supported. More generally, our results show that under relatively mild restrictions, we can obtain strong conclusions regarding our questions of interest. © 2011 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00175
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by MIT Press in its journal Review of Economics and Statistics.

Volume (Year): 93 (2011)
Issue (Month): 2 (May)
Pages: 495-509

as in new window
Handle: RePEc:tpr:restat:v:93:y:2011:i:2:p:495-509

Contact details of provider:
Web page: http://mitpress.mit.edu/journals/

Order Information:
Web: http://mitpress.mit.edu/journal-home.tcl?issn=00346535

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Agar Brugiavini & Erich Battistin, & Enrico Rettore & Guglielmo Weber, 2007. "The Retirement Consumption Puzzle: Evidence from a Regression Discontinuity Approach," Working Papers 2007_27, Department of Economics, University of Venice "Ca' Foscari".

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:93:y:2011:i:2:p:495-509. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Karie Kirkpatrick).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.