IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i14p4352-4366.html
   My bibliography  Save this article

How to design a dynamic feed-in tariffs mechanism for renewables – a real options approach

Author

Listed:
  • Li Li
  • Junqi Liu
  • Lei Zhu
  • Xiao-Bing Zhang

Abstract

Feed-in tariffs (FITs) are among the most favoured policies with which to drive the deployment of renewable energy. This paper offers insights into quantifying dynamic FITs to realise the expected installed capacity target with minimum policy cost under uncertainties of renewable intermittence and technology learning. We incorporate real options and use stochastic dynamic programming to model the strategic behaviour between policy-maker and investor and extend the one-time investment decision described by Farrell et al. [2017. ‘Specifying an Efficient Renewable Energy Feed-in Tariff.’ The Energy Journal 38: 53–75] to multiple-period decisions. An approach that combines binary tree scenario generation and a least squares Monte Carlo method is used to numerically identify the optimal FITs plan in practice. China’s offshore wind power investment is used as a case study to investigate the relationships among the optimal dynamic FITs level, the total policy cost, the expected capacity target, and the learning effect. The simulation results demonstrate that our proposed dynamic FITs can track the changes in technology learning well and that they can avoid the inefficiency of fixed FITs in stimulating technology adoption in the initial periods, along with overpayment by the policy-maker.

Suggested Citation

  • Li Li & Junqi Liu & Lei Zhu & Xiao-Bing Zhang, 2020. "How to design a dynamic feed-in tariffs mechanism for renewables – a real options approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(14), pages 4352-4366, July.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:14:p:4352-4366
    DOI: 10.1080/00207543.2019.1652776
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1652776
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1652776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Xie, Yongjing, 2023. "The impact of government subsidies on capacity utilization in the Chinese renewable energy industry: Does technological innovation matter?," Applied Energy, Elsevier, vol. 352(C).
    2. Miraj Ahmed Bhuiyan & Jaehyung An & Alexey Mikhaylov & Nikita Moiseev & Mir Sayed Shah Danish, 2021. "Renewable Energy Deployment and COVID-19 Measures for Sustainable Development," Sustainability, MDPI, vol. 13(8), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:14:p:4352-4366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.