IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v1y2001i5p527-532.html
   My bibliography  Save this article

More on a statistical analysis of log-periodic precursors to financial crashes

Author

Listed:
  • J. A. Feigenbaum

Abstract

We respond to Sornette and Johansen's criticisms of our findings regarding log-periodic precursors to financial crashes. Included in this paper are discussions of the Sornette-Johansen theoretical paradigm, traditional methods of identifying log-periodic precursors, the behaviour of the first differences of a log-periodic price series and the distribution of drawdowns for a securities price.

Suggested Citation

  • J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
  • Handle: RePEc:taf:quantf:v:1:y:2001:i:5:p:527-532
    DOI: 10.1080/713665875
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/713665875
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/713665875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans-Christian Graf v. Bothmer, 2003. "Significance of log-periodic signatures in cumulative noise," Papers cond-mat/0302507, arXiv.org, revised May 2003.
    2. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
    3. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    4. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    5. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    6. Fry, J. M., 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," MPRA Paper 16027, University Library of Munich, Germany.
    7. Zhou, Wei-Xing & Sornette, Didier, 2004. "Antibubble and prediction of China's stock market and real-estate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 243-268.
    8. Zhou, Wei-Xing & Sornette, Didier, 2004. "Causal slaving of the US treasury bond yield antibubble by the stock market antibubble of August 2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 586-608.
    9. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    10. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    11. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    12. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
    13. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    14. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    15. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    16. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    17. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
    18. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    19. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    20. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    21. Martin Herdegen & Sebastian Herrmann, 2017. "Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble," Papers 1711.06679, arXiv.org.
    22. Ahčan Aleš, 2011. "Testing the Sustainability of Growth of the LJSEX in the January 2000 to May 2010 period," Organizacija, Sciendo, vol. 44(2), pages 47-58, March.
    23. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:1:y:2001:i:5:p:527-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.