IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i1p17-30.html
   My bibliography  Save this article

American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics

Author

Listed:
  • Ankush Agarwal
  • Sandeep Juneja
  • Ronnie Sircar

Abstract

American options are actively traded worldwide on exchanges, thus making their accurate and efficient pricing an important problem. As most financial markets exhibit randomly varying volatility, in this paper we introduce an approximation of an American option price under stochastic volatility models. We achieve this by using the maturity randomization method known as Canadization. The volatility process is characterized by fast and slow-scale fluctuating factors. In particular, we study the case of an American put with a single underlying asset and use perturbative expansion techniques to approximate its price as well as the optimal exercise boundary up to the first order. We then use the approximate optimal exercise boundary formula to price an American put via Monte Carlo. We also develop efficient control variates for our simulation method using martingales resulting from the approximate price formula. A numerical study is conducted to demonstrate that the proposed method performs better than the least squares regression method popular in the financial industry, in typical settings where values of the scaling parameters are small. Further, it is empirically observed that in the regimes where the scaling parameter value is equal to unity, fast and slow-scale approximations are equally accurate.

Suggested Citation

  • Ankush Agarwal & Sandeep Juneja & Ronnie Sircar, 2016. "American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 17-30, January.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:1:p:17-30
    DOI: 10.1080/14697688.2015.1068443
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1068443
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1068443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.
    2. Florian Kleinert & Kees van Schaik, 2013. "A variation of the Canadisation algorithm for the pricing of American options driven by L\'evy processes," Papers 1304.4534, arXiv.org.
    3. Robert B. Gramacy & Mike Ludkovski, 2013. "Sequential Design for Optimal Stopping Problems," Papers 1309.3832, arXiv.org, revised Jul 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gapeev, Pavel V. & Rodosthenous, Neofytos & Chinthalapati, V.L Raju, 2019. "On the Laplace transforms of the first hitting times for drawdowns and drawups of diffusion-type processes," LSE Research Online Documents on Economics 101272, London School of Economics and Political Science, LSE Library.
    2. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Ha, Mijin & Kim, Donghyun & Yoon, Ji-Hun, 2024. "Valuing of timer path-dependent options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 208-227.
    4. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019.
    5. Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
    6. Pavel V. Gapeev & Neofytos Rodosthenous & V. L. Raju Chinthalapati, 2019. "On the Laplace Transforms of the First Hitting Times for Drawdowns and Drawups of Diffusion-Type Processes," Risks, MDPI, vol. 7(3), pages 1-15, August.
    7. David A. Goldberg & Yilun Chen, 2018. "Beating the curse of dimensionality in options pricing and optimal stopping," Papers 1807.02227, arXiv.org, revised Aug 2018.
    8. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    9. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Chen, Jilong & Ewald, Christian-Oliver, 2017. "Pricing commodity futures options in the Schwartz multi factor model with stochastic volatility: An asymptotic method," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 144-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Noba & Jos'e-Luis P'erez & Kazutoshi Yamazaki & Kouji Yano, 2017. "On optimal periodic dividend strategies for L\'evy risk processes," Papers 1708.01678, arXiv.org, revised Feb 2018.
    2. Long, Mingsi & Zhang, Hongzhong, 2019. "On the optimality of threshold type strategies in single and recursive optimal stopping under Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2821-2849.
    3. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    4. Czarna, Irmina & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Optimality of multi-refraction control strategies in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 148-160.
    5. Jos'e-Luis P'erez & Kazutoshi Yamazaki, 2023. "L\'evy bandits under Poissonian decision times," Papers 2301.07798, arXiv.org.
    6. Pérez, José-Luis & Yamazaki, Kazutoshi, 2017. "On the optimality of periodic barrier strategies for a spectrally positive Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 1-13.
    7. Søren Asmussen & Patrick J. Laub & Hailiang Yang, 2019. "Phase-Type Models in Life Insurance: Fitting and Valuation of Equity-Linked Benefits," Risks, MDPI, vol. 7(1), pages 1-22, February.
    8. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "Optimal Multiple Stopping with Negative Discount Rate and Random Refraction Times under Levy Models," Papers 1505.07313, arXiv.org.
    9. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    10. Jos'e-Luis P'erez & Kazutoshi Yamazaki, 2016. "Hybrid continuous and periodic barrier strategies in the dual model: optimality and fluctuation identities," Papers 1612.02444, arXiv.org, revised Jan 2018.
    11. Noba, Kei & Pérez, José-Luis & Yamazaki, Kazutoshi & Yano, Kouji, 2018. "On optimal periodic dividend strategies for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 29-44.
    12. Jos'e-Luis P'erez & Kazutoshi Yamazaki & Alain Bensoussan, 2018. "Optimal periodic replenishment policies for spectrally positive L\'evy demand processes," Papers 1806.09216, arXiv.org, revised Sep 2020.
    13. Mingsi Long & Hongzhong Zhang, 2017. "On the optimality of threshold type strategies in single and recursive optimal stopping under L\'evy models," Papers 1707.07797, arXiv.org, revised Aug 2018.
    14. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:1:p:17-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.