IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v19y2013i2p159-174.html
   My bibliography  Save this article

Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study

Author

Listed:
  • Joydev Chattopadhyay
  • Ezio Venturino
  • Samrat Chatterjee

Abstract

We propose a simple model of toxin-producing phytoplankton–zooplankton interactions in which the former is assumed to be able to detect the presence of zooplankton and to counteract it by forming patches and by releasing some toxic chemicals in the surrounding water. We observe that the formation of patch by the toxin-producing phytoplankton decreases the grazing pressure of zooplankton, resulting in stronger coupling between the interacting species determined by the fraction of the phytoplankton population that aggregates to form patches. Finally, the results were validated by comparing them with an alternative spatial model.

Suggested Citation

  • Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
  • Handle: RePEc:taf:nmcmxx:v:19:y:2013:i:2:p:159-174
    DOI: 10.1080/13873954.2012.708876
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2012.708876
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2012.708876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 262-276.
    2. Xabier Irigoien & Jef Huisman & Roger P. Harris, 2004. "Global biodiversity patterns of marine phytoplankton and zooplankton," Nature, Nature, vol. 429(6994), pages 863-867, June.
    3. Jef Huisman & Franz J. Weissing, 2000. "reply: Coexistence and resource competition," Nature, Nature, vol. 407(6805), pages 694-694, October.
    4. Edward R. Abraham, 1998. "The generation of plankton patchiness by turbulent stirring," Nature, Nature, vol. 391(6667), pages 577-580, February.
    5. Maayke Stomp & Jef Huisman & Floris de Jongh & Annelies J. Veraart & Daan Gerla & Machteld Rijkeboer & Bas W. Ibelings & Ute I. A. Wollenzien & Lucas J. Stal, 2004. "Adaptive divergence in pigment composition promotes phytoplankton biodiversity," Nature, Nature, vol. 432(7013), pages 104-107, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsakalakis, Ioannis & Pahlow, Markus & Oschlies, Andreas & Blasius, Bernd & Ryabov, Alexey B., 2018. "Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity," Ecological Modelling, Elsevier, vol. 384(C), pages 241-248.
    2. Doyeong Ku & Yeon-Ji Chae & Yerim Choi & Chang Woo Ji & Young-Seuk Park & Ihn-Sil Kwak & Yong-Jae Kim & Kwang-Hyeon Chang & Hye-Ji Oh, 2022. "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width an," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
    3. Zhang, Haibo & Richardson, Patricia A. & Belayneh, Bruk E. & Ristvey, Andrew & Lea-Cox, John & Copes, Warren E. & Moorman, Gary W. & Hong, Chuanxue, 2015. "Characterization of water quality in stratified nursery recycling irrigation reservoirs," Agricultural Water Management, Elsevier, vol. 160(C), pages 76-83.
    4. Liqiang Yang & Xiaotong He & Shaoguo Ru & Yongyu Zhang, 2024. "Herbicide leakage into seawater impacts primary productivity and zooplankton globally," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Vilar, J.M.G. & Solé, R.V. & Rubı́, J.M., 2003. "On the origin of plankton patchiness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 317(1), pages 239-246.
    6. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    7. Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
    8. Jean-Éric Tremblay & Dominique Robert & Diana Varela & Connie Lovejoy & Gérald Darnis & R. Nelson & Akash Sastri, 2012. "Current state and trends in Canadian Arctic marine ecosystems: I. Primary production," Climatic Change, Springer, vol. 115(1), pages 161-178, November.
    9. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    10. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    11. Bengfort, Michael & Malchow, Horst, 2016. "Vertical mixing and hysteresis in the competition of buoyant and non-buoyant plankton prey species in a shallow lake," Ecological Modelling, Elsevier, vol. 323(C), pages 51-60.
    12. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    13. Ludovisi, Alessandro & Roselli, Leonilde & Basset, Alberto, 2012. "Testing the effectiveness of exergy-based tools on a seasonal succession in a coastal lagoon by using a size distribution approach," Ecological Modelling, Elsevier, vol. 245(C), pages 125-135.
    14. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.
    15. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Goebel, N.L. & Edwards, C.A. & Zehr, J.P. & Follows, M.J. & Morgan, S.G., 2013. "Modeled phytoplankton diversity and productivity in the California Current System," Ecological Modelling, Elsevier, vol. 264(C), pages 37-47.
    17. Serizawa, H. & Amemiya, T. & Itoh, K., 2009. "Patchiness and bistability in the comprehensive cyanobacterial model (CCM)," Ecological Modelling, Elsevier, vol. 220(6), pages 764-773.
    18. Olusoji, Oluwafemi D. & Spaak, Jurg W. & Holmes, Mark & Neyens, Thomas & Aerts, Marc & De Laender, Frederik, 2021. "cyanoFilter: An R package to identify phytoplankton populations from flow cytometry data using cell pigmentation and granularity," Ecological Modelling, Elsevier, vol. 460(C).
    19. Das, Tanaya & Chakraborti, Saranya & Mukherjee, Joydeep & Sen, Goutam Kumar, 2018. "Mathematical modelling for phytoplankton distribution in Sundarbans Estuarine System, India," Ecological Modelling, Elsevier, vol. 368(C), pages 111-120.
    20. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 584-594.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:19:y:2013:i:2:p:159-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.