IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i530p721-729.html
   My bibliography  Save this article

Smoothing With Couplings of Conditional Particle Filters

Author

Listed:
  • Pierre E. Jacob
  • Fredrik Lindsten
  • Thomas B. Schön

Abstract

In state–space models, smoothing refers to the task of estimating a latent stochastic process given noisy measurements related to the process. We propose an unbiased estimator of smoothing expectations. The lack-of-bias property has methodological benefits: independent estimators can be generated in parallel, and CI can be constructed from the central limit theorem to quantify the approximation error. To design unbiased estimators, we combine a generic debiasing technique for Markov chains, with a Markov chain Monte Carlo algorithm for smoothing. The resulting procedure is widely applicable and we show in numerical experiments that the removal of the bias comes at a manageable increase in variance. We establish the validity of the proposed estimators under mild assumptions. Numerical experiments are provided on toy models, including a setting of highly informative observations, and for a realistic Lotka–Volterra model with an intractable transition density. Supplementary materials for this article are available online.

Suggested Citation

  • Pierre E. Jacob & Fredrik Lindsten & Thomas B. Schön, 2020. "Smoothing With Couplings of Conditional Particle Filters," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 721-729, April.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:721-729
    DOI: 10.1080/01621459.2018.1548856
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1548856
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1548856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    2. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:721-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.