IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i504p1411-1420.html
   My bibliography  Save this article

On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm

Author

Listed:
  • Min Yang
  • Stefanie Biedermann
  • Elina Tang

Abstract

Finding optimal designs for nonlinear models is challenging in general. Although some recent results allow us to focus on a simple subclass of designs for most problems, deriving a specific optimal design still mainly depends on numerical approaches. There is need for a general and efficient algorithm that is more broadly applicable than the current state-of-the-art methods. We present a new algorithm that can be used to find optimal designs with respect to a broad class of optimality criteria, when the model parameters or functions thereof are of interest, and for both locally optimal and multistage design strategies. We prove convergence to the optimal design, and show in various examples that the new algorithm outperforms the current state-of-the-art algorithms.

Suggested Citation

  • Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1411-1420
    DOI: 10.1080/01621459.2013.806268
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.806268
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.806268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weng Kee Wong & Ray-Bing Chen & Chien-Chih Huang & Weichung Wang, 2015. "A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    2. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Hyun Seung Won & Wong Weng Kee, 2015. "Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 253-271, November.
    4. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    5. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
    7. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    8. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    9. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    10. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    11. Chen, Ping-Yang & Chen, Ray-Bing & Chen, Yu-Shi & Wong, Weng Kee, 2023. "Numerical Methods for Finding A-optimal Designs Analytically," Econometrics and Statistics, Elsevier, vol. 28(C), pages 155-162.
    12. Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
    13. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    14. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    15. Lenka Filová & Radoslav Harman, 2020. "Ascent with quadratic assistance for the construction of exact experimental designs," Computational Statistics, Springer, vol. 35(2), pages 775-801, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1411-1420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.