IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i8p1651-1663.html
   My bibliography  Save this article

Non-mixture cure correlated frailty models in Bayesian approach

Author

Listed:
  • Mitra Rahimzadeh
  • Ebrahim Hajizadeh
  • Farzad Eskandari

Abstract

In this article, we develop a Bayesian approach for the estimation of two cure correlated frailty models that have been extended to the cure frailty models introduced by Yin [34]. We used the two different type of frailty with bivariate log-normal distribution instead of gamma distribution. A likelihood function was constructed based on a piecewise exponential distribution function. The model parameters were estimated by the Markov chain Monte Carlo method. The comparison of models is based on the Cox correlated frailty model with log-normal distribution. A real data set of bilateral corneal graft rejection was used to compare these models. The results of this data, based on deviance information criteria, showed the advantage of the proposed models.

Suggested Citation

  • Mitra Rahimzadeh & Ebrahim Hajizadeh & Farzad Eskandari, 2011. "Non-mixture cure correlated frailty models in Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1651-1663, August.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:8:p:1651-1663
    DOI: 10.1080/02664763.2010.515966
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.515966
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.515966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kheiri, Soleiman & Kimber, Alan & Reza Meshkani, Mohammad, 2007. "Bayesian analysis of an inverse Gaussian correlated frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5317-5326, July.
    2. Madhuja Mallick & Nalini Ravishanker, 2006. "Additive Positive Stable Frailty Models," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 541-558, December.
    3. Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
    4. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    5. Joseph G. Ibrahim & Ming-Hui Chen & Debajyoti Sinha, 2001. "Bayesian Semiparametric Models for Survival Data with a Cure Fraction," Biometrics, The International Biometric Society, vol. 57(2), pages 383-388, June.
    6. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    2. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    3. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    4. Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
    5. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    6. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Jing Wang, 2019. "Weighted estimation for multivariate shared frailty models for complex surveys," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 469-479, July.
    8. Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
    9. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    10. Mojtaba Ganjali & T. Baghfalaki & D. Berridge, 2014. "A Bayesian Analysis of Unobserved Heterogeneity for Unemployment Duration Data in the Presence of Interval Censoring," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 24-41, April.
    11. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    12. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    13. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    14. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    15. Nihal Ata Tutkun & Diren Yeğen, 2016. "Unshared and Shared Frailty Models," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(1), pages 45-56, June.
    16. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    17. Jose S. Romeo & Renate Meyer & Diego I. Gallardo, 2018. "Bayesian bivariate survival analysis using the power variance function copula," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 355-383, April.
    18. Bo Liu & Tien Foo Sing, 2018. "“Cure” Effects and Mortgage Default: A Split Population Survival Time Model," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 217-251, February.
    19. Li, Mingyang & Liu, Jian, 2016. "Bayesian hazard modeling based on lifetime data with latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 183-189.
    20. Andreas Wienke & Konstantin G. Arbeev & Isabella Locatelli & Anatoli I. Yashin, 2003. "A simulation study of different correlated frailty models and estimation strategies," MPIDR Working Papers WP-2003-018, Max Planck Institute for Demographic Research, Rostock, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:8:p:1651-1663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.