IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i4p831-848.html
   My bibliography  Save this article

Bernstein polynomial model for grouped continuous data

Author

Listed:
  • Zhong Guan

Abstract

Grouped data are commonly encountered in applications. All data from a continuous population are grouped due to rounding of the individual observations. The Bernstein polynomial model is proposed as an approximate model in this paper for estimating a univariate density function based on grouped data. The coefficients of the Bernstein polynomial, as the mixture proportions of beta distributions, can be estimated using an EM algorithm. The optimal degree of the Bernstein polynomial can be determined using a change-point estimation method. The rate of convergence of the proposed density estimate to the true density is proved to be almost parametric by an acceptance–rejection argument used for generating random numbers. The proposed method is compared with some existing methods in a simulation study and is applied to the Chicken Embryo Data.

Suggested Citation

  • Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:4:p:831-848
    DOI: 10.1080/10485252.2017.1374384
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1374384
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1374384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    2. Nan Lin & Xuming He, 2006. "Robust and efficient estimation under data grouping," Biometrika, Biometrika Trust, vol. 93(1), pages 99-112, March.
    3. Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
    4. P. N. Jones & G. J. McLachlan, 1990. "Maximum Likelihood Estimation from Grouped and Truncated Data with Finite Normal Mixture Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 273-282, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    3. Wang, Tao & Guan, Zhong, 2023. "Choice of degree of Bernstein polynomial model," Statistics & Probability Letters, Elsevier, vol. 200(C).
    4. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    5. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    3. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    5. Cheng, Xueqin & Li, Yanpeng, 2022. "An improved Hoeffding’s inequality for sum of independent random variables," Statistics & Probability Letters, Elsevier, vol. 183(C).
    6. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    7. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    8. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    9. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    10. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    12. James W. Kolari & Jianhua Z. Huang & Wei Liu & Huiling Liao, 2022. "Further Tests of the ZCAPM Asset Pricing Model," JRFM, MDPI, vol. 15(3), pages 1-23, March.
    13. Bo Han & Ingrid Van Keilegom & Xiaoguang Wang, 2022. "Semiparametric estimation of the nonmixture cure model with auxiliary survival information," Biometrics, The International Biometric Society, vol. 78(2), pages 448-459, June.
    14. Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    15. Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
    16. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    17. Peng Zeng & Qinqin Hu & Xiaoyu Li, 2017. "Geometry and Degrees of Freedom of Linearly Constrained Generalized Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 989-1008, December.
    18. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    19. Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.
    20. Georg Ch. Pflug & Roger J.-B. Wets, 2013. "Shape-restricted nonparametric regression with overall noisy measurements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 323-338, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:4:p:831-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.