IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i10d10.1007_s11269-023-03511-2.html
   My bibliography  Save this article

Efficient Segmentation Algorithm for Estimation of Revised Reservoir Capacities in Google Earth Engine

Author

Listed:
  • Rahul Kumar Jaiswal

    (National Institute of Hydrology)

  • Gunja Dhruw

    (Indira Gandhi Krishi Vishwavidyalaya)

  • Sukant Jain

    (National Institute of Hydrology)

  • Ravi V. Galkate

    (National Institute of Hydrology)

  • Anil Kumar Lohani

    (National Institute of Hydrology)

  • Akhilesh Verma

    (Govt. of CG)

Abstract

The periodic assessment of the revised capacity is essential and conventional techniques through bathymetric surveys and inflow-outflow techniques are time and resource intensive. The application of optical remote sensing data is practiced for a long time to compute the revised capacity of the reservoir but has the limitation of selecting threshold values and inefficacy of the method during the cloudy season. This research proposed the application of the Otsu segmentation technique in Google Earth Engine (GEE) to determine revised water spread using microwave remote sensing data. The Otsu technique is efficient in classifying the image into two distinct classes using within and between-class variances. An application has been developed using Sentinel data in GEE, which has the capacity of cloud-based computing and applied to the four reservoirs of Mahanadi Reservoir Project (MRP) namely Ravishankar Sagar, Murumsilli, Dudhawa, and Sondur reservoir in the Chhattisgarh state of India. The original capacities of these reservoirs vary from 910.51 MCM of Ravishankar (RS) Sagar to 165.89 MCM of Murumsilli reservoir. The revised water spreads computed in the GEE were further used to compute revised volume and in turn the revised cumulative capacities at different levels. The analysis suggested that 17.65% of dead storage (118.26 MCM from 143.00 MCM) and 9.25% of gross storage (85.26 MCM from 910.52 MCM) of RS Sagar has been lost in 42 years (1978 to 2020). Similarly, 10.33% gross capacity of Murumsilli, 13.12% of Sondur, and 12.37% of Dudhawa reservoirs have been lost due to the deposit of sediments from the catchments, and results were found comparable with bathymetric survey results of three reservoirs. The proposed application has been developed in GEE so it can be used in any part of the world in cloudy weather with no human interference.

Suggested Citation

  • Rahul Kumar Jaiswal & Gunja Dhruw & Sukant Jain & Ravi V. Galkate & Anil Kumar Lohani & Akhilesh Verma, 2023. "Efficient Segmentation Algorithm for Estimation of Revised Reservoir Capacities in Google Earth Engine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3795-3812, August.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03511-2
    DOI: 10.1007/s11269-023-03511-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03511-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03511-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    2. Sanjay Jain & Arun Saraf & Ajanta Goswami & Tanvear Ahmad, 2006. "Flood inundation mapping using NOAA AVHRR data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 949-959, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    2. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    3. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    4. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    6. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Paulilo Brasil & Pedro Medeiros, 2020. "NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 195-210, January.
    10. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Alexey Victorov & Veronika Kapralova & Timofey Orlov & Olga Trapeznikova & Maria Arkhipova, 2022. "Research into Cryolithozone Spatial Pattern Changes Based on the Mathematical Morphology of Landscapes," Energies, MDPI, vol. 15(3), pages 1-19, February.
    13. Eleni S. Bekri & Ioannis P. Kokkoris & Charalambos S. Christodoulou & Antonia Sophocleous-Lemonari & Panayotis Dimopoulos, 2023. "Management Implications at a Protected, Peri-Urban, Salt Lake Ecosystem: The Case of Larnaca’s Salt Lakes (Cyprus)," Land, MDPI, vol. 12(9), pages 1-18, September.
    14. Margaret Kalacska & Oliver Lucanus & Leandro Sousa & J. Pablo Arroyo-Mora, 2020. "High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex," Data, MDPI, vol. 5(3), pages 1-12, August.
    15. Yi Xi & Shushi Peng & Gang Liu & Agnès Ducharne & Philippe Ciais & Catherine Prigent & Xinyu Li & Xutao Tang, 2022. "Trade-off between tree planting and wetland conservation in China," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Liwei Xing & Liang Chi & Shuqing Han & Jianzhai Wu & Jing Zhang & Cuicui Jiao & Xiangyang Zhou, 2022. "Spatiotemporal Dynamics of Wetland in Dongting Lake Based on Multi-Source Satellite Observation Data during Last Two Decades," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    17. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    18. Conghong Huang & Yan Tang & Yiyang Wu & Yu Tao & Muwu Xu & Nan Xu & Mingze Li & Xiaodan Liu & Henghui Xi & Weixin Ou, 2024. "Assessing Long-Term Thermal Environment Change with Landsat Time-Series Data in a Rapidly Urbanizing City in China," Land, MDPI, vol. 13(2), pages 1-15, February.
    19. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    20. Haobin Meng & Jing Zhang & Zhen Zheng, 2022. "Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression," IJERPH, MDPI, vol. 19(13), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:10:d:10.1007_s11269-023-03511-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.