IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i3d10.1007_s11269-022-03064-w.html
   My bibliography  Save this article

Sustainable Conjunctive Water Use Modeling Using Dual Fitness Particle Swarm Optimization Algorithm

Author

Listed:
  • Farshad Rezaei

    (Isfahan University of Technology)

  • Hamid R. Safavi

    (Isfahan University of Technology)

Abstract

In any meta-heuristic algorithm, each search agent must move to the high-fitness areas in the search space while preserving its diversity. At first glance, there is no relationship between fitness and diversity, as two key factors to be considered in selecting a guide for the solutions. In other words, each of these factors must be evaluated in its specific and independent way. Since the independent ways to evaluate the fitness and diversity usually make any meta-heuristic consider these factors disproportionately to choose the guides, the solutions’ movements may be unbalanced. In this paper, we propose a novel version of the Particle Swarm Optimization (PSO) algorithm, named Dual Fitness PSO (DFPSO). In this algorithm, not only fitness and diversity of the particles are properly evaluated, but also the abilities to evaluate these features are integrated to avoid the abovementioned problem in determining the global guide particles. After verification of the DFPSO via applying them to several benchmark functions, it is applied to solve a real-world optimal conjunctive water use management problem. The objective is minimizing shortages in meeting irrigation water demands under several climatic conditions. The optimal results suggest that while the water demands are desirably met, the cumulative groundwater level (GWL) drawdown is highly decreased to help maintain the sustainability of the aquifer, demonstrating the high efficiency of the DFPSO to also handle the practical engineering problems.

Suggested Citation

  • Farshad Rezaei & Hamid R. Safavi, 2022. "Sustainable Conjunctive Water Use Modeling Using Dual Fitness Particle Swarm Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 989-1006, February.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03064-w
    DOI: 10.1007/s11269-022-03064-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03064-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03064-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamidreza Majedi & Hossein Fathian & Alireza Nikbakht-Shahbazi & Narges Zohrabi & Fatemeh Hassani, 2021. "Multi-Objective Optimization of Integrated Surface and Groundwater Resources Under the Clean Development Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2685-2704, June.
    2. Mulu Sewinet Kerebih & Ashok K. Keshari, 2021. "Distributed Simulation‐optimization Model for Conjunctive Use of Groundwater and Surface Water Under Environmental and Sustainability Restrictions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2305-2323, June.
    3. Ali Fazlali & Mojtaba Shourian, 2018. "A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Kayhomayoon & Sami Ghordoyee Milan & Naser Arya Azar & Pete Bettinger & Faezeh Babaian & Abolfazl Jaafari, 2022. "A Simulation-Optimization Modeling Approach for Conjunctive Water Use Management in a Semi-Arid Region of Iran," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    2. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    3. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    2. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    3. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    4. Farzad Emami & Manfred Koch, 2018. "Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change," Sustainability, MDPI, vol. 10(11), pages 1-32, October.
    5. Navid Shenava & Mojtaba Shourian, 2018. "Optimal Reservoir Operation with Water Supply Enhancement and Flood Mitigation Objectives Using an Optimization-Simulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4393-4407, October.
    6. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    7. Abbas Afshar & Mina Khosravi & Amir Molajou, 2021. "Assessing Adaptability of Cyclic and Non-Cyclic Approach to Conjunctive use of Groundwater and Surface water for Sustainable Management Plans under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3463-3479, September.
    8. Chongfeng Ren & Hongbo Zhang, 2019. "An Inexact Optimization Model for Crop Area Under Multiple Uncertainties," IJERPH, MDPI, vol. 16(14), pages 1-20, July.
    9. Kian Fadaeizadeh & Mojtaba Shourian, 2019. "Determination of the Optimal River Basin-Wide Agricultural Water Demand Quantities Meeting Satisfactory Reliability Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2665-2676, June.
    10. Chen, Junxu & Zhang, Chenglong & Guo, Ping, 2022. "A credibility-based interval multi-objective crop area planning model for agricultural and ecological management," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Khawar Naeem & Adel Zghibi & Adel Elomri & Annamaria Mazzoni & Chefi Triki, 2023. "A Literature Review on System Dynamics Modeling for Sustainable Management of Water Supply and Demand," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    12. Akbari, Fatemeh & Shourian, Mojtaba & Moridi, Ali, 2022. "Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model," Agricultural Water Management, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:3:d:10.1007_s11269-022-03064-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.