IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i13d10.1007_s11269-022-03299-7.html
   My bibliography  Save this article

Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings

Author

Listed:
  • Jersain Gómez Núñez

    (Universidad Autónoma Metropolitana, Unidad Azcapotzalco)

  • Magdalena García Martínez

    (Universidad Autónoma Metropolitana, Unidad Lerma)

  • Rojacques Mompremier

    (Universidad Autónoma Metropolitana, Unidad Azcapotzalco)

  • Beatriz A. González Beltrán

    (Universidad Autónoma Metropolitana, Unidad Azcapotzalco)

  • Icela Dagmar Barceló Quintal

    (Universidad Autónoma Metropolitana, Unidad Azcapotzalco)

Abstract

The behavior of a rainwater harvesting system depends on some variables that cannot be controlled, such as rainfall, building roof size and water consumption. The selection regarding rainwater tank-size will affect the performance of the system and the cost–benefit ratio. The criterion employed for this selection is based on the need for volume-storage and typically, yield large-sized rainwater tanks, especially when the amount of rainwater is higher during rainy seasons. This article presents a methodology for modelling rainwater harvesting, storage, and water consumption, for different configurations of a set of buildings, called clusters, where all buildings collect, store and consume water. This methodology allows for analyzing with different indicators, what is the best recommended configuration and tank-sizing, based on configuration and storage ratio exhibited, thus avoiding the situation of being underutilized. The proposed methodology is applied to a case of study at a university, in Mexico City. In this study case, the dynamics per day is modeled over a year, considering monthly rainfall averages, over 2 groups made up out of 4 buildings with different collecting capabilities and consumption each, allowing for the analysis of 9 cluster configurations and 4 rainwater tank-sizing dimensions. The results are analyzed by means of annual indicators such as: the decrease in the volume used from the public water network, the days of autonomy of the system, and a coefficient $$R$$ R (which relates the volume spilled to the empty volume). This coefficient is then used selection regarding rainwater tank-sizing and the most recommended cluster configuration.

Suggested Citation

  • Jersain Gómez Núñez & Magdalena García Martínez & Rojacques Mompremier & Beatriz A. González Beltrán & Icela Dagmar Barceló Quintal, 2022. "Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5191-5205, October.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03299-7
    DOI: 10.1007/s11269-022-03299-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03299-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03299-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Singh & B. Yaduvanshi & Swati Patel & Saswati Ray, 2013. "SCS-CN Based Quantification of Potential of Rooftop Catchments and Computation of ASRC for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2001-2012, May.
    2. Stephen Cook & Ashok Sharma & Meng Chong, 2013. "Performance Analysis of a Communal Residential Rainwater System for Potable Supply: A Case Study in Brisbane, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4865-4876, November.
    3. Santos, C. & Taveira-Pinto, F., 2013. "Analysis of different criteria to size rainwater storage tanks using detailed methods," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    2. Kuldeep Tiwari & Rohit Goyal & Archana Sarkar, 2018. "GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1811-1825, March.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    4. Liangxin Fan & Guobin Liu & Fei Wang & Coen Ritsema & Violette Geissen, 2014. "Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 853-865, February.
    5. Tatek Temesgen & Mooyoung Han & Hyunju Park & Tschung-il Kim, 2016. "Policies and Strategies to Overcome Barriers to Rainwater Harvesting for Urban Use in Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5205-5215, November.
    6. Flora Silva & Cristina Sousa Coutinho Calheiros & António Albuquerque & Jorge Pedro Lopes & Ana Maria Antão-Geraldes, 2023. "Technical and Financial Feasibility Analysis of Rainwater Harvesting Using Conventional or Green Roofs in an Industrial Building," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    7. Caleb Christian Amos & Amir Ahmed & Ataur Rahman, 2020. "Sustainability in Water Provision in Rural Communities: the Feasibility of a Village Scale Rainwater Harvesting Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4633-4647, December.
    8. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    9. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    10. P. Singh & S. Mishra & R. Berndtsson & M. Jain & R. Pandey, 2015. "Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4111-4127, September.
    11. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    12. Dihang Xu & Zhiyun Ouyang & Tong Wu & Baolong Han, 2020. "Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    13. Gurung, Thulo Ram & Stewart, Rodney A. & Sharma, Ashok K. & Beal, Cara D., 2014. "Smart meters for enhanced water supply network modelling and infrastructure planning," Resources, Conservation & Recycling, Elsevier, vol. 90(C), pages 34-50.
    14. Yi-Tui Chen & Chung-Chiang Chen, 2014. "The Optimal Reuse of Reclaimed Water: A Mathematical Model Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2035-2048, May.
    15. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    16. Cook, Stephen & Sharma, Ashok K & Gurung, Thulo Ram, 2014. "Evaluation of alternative water sources for commercial buildings: A case study in Brisbane, Australia," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 86-93.
    17. Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03299-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.