IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i1d10.1007_s11269-020-02709-y.html
   My bibliography  Save this article

A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall

Author

Listed:
  • Ming Zhong

    (Sun Yat-sen University)

  • Ting Zeng

    (Sun Yat-sen University)

  • Tao Jiang

    (Sun Yat-sen University)

  • Huan Wu

    (Sun Yat-sen University
    University of Maryland)

  • Xiaohong Chen

    (Sun Yat-sen University)

  • Yang Hong

    (University of Oklahoma)

Abstract

Flash floods can be characterized by several variables. Of these, soil moisture (SM) is an important environmental factor that plays a key role in hydrological and ecological processes and affects the mechanisms that cause flash floods. To more accurately determine the occurrence probability of flash floods, the combined effects of soil moisture and rainfall indexes were considered in this paper, and the copula function approach was explored for use in joint probability analyses of flash flood risks. The results showed that (1) the Clayton copula function offered the best fit for the bivariate joint distribution and captured the occurrence probability of the combination of both peak flow (PF) and SM, while the t-copula function achieved the best fit for the multivariate joint distribution, which presented different combinations of characteristic flash flood parameters. (2) The joint distribution probability of flash floods increased with increasing risk parameter thresholds. Return period analysis indicated that the return periods of the bivariate joint distribution were smaller than those of the multivariate joint distribution. (3) If PF and SM are fixed, the occurrence probability of flash floods is higher in regions where the maximum 1-h rainfall is higher. This study provides an effective and quantitative approach to improving flash flood prediction and advances the application of this approach for the management of future flash flood risks.

Suggested Citation

  • Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:1:d:10.1007_s11269-020-02709-y
    DOI: 10.1007/s11269-020-02709-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02709-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02709-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Christian G Spainhour & Michael G Janech & John H Schwacke & Juan Carlos Q Velez & Viswanathan Ramakrishnan, 2014. "The Application of Gaussian Mixture Models for Signal Quantification in MALDI-ToF Mass Spectrometry of Peptides," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    2. Huang Hu & Niu Jun-yi, 2015. "Compensative Operating Feasibility Analysis of the West Route of South-to-North Water Transfer Project Dased on M-Copula Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3919-3927, September.
    3. Xiaoyan Zhai & Liang Guo & Ronghua Liu & Yongyong Zhang, 2018. "Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 605-625, November.
    4. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    5. Jesús Gastélum & Chuck Cullom, 2013. "Application of the Colorado River Simulation System Model to Evaluate Water Shortage Conditions in the Central Arizona Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2369-2389, May.
    6. Esmaeel Dodangeh & Vijay P. Singh & Binh Thai Pham & Jiabo Yin & Guang Yang & Amirhosein Mosavi, 2020. "Flood Frequency Analysis of Interconnected Rivers by Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3533-3549, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen An & Ming Dou & Jianling Zhang & Guiqiu Li, 2021. "Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4877-4894, November.
    2. Longxia Qian & Yong Zhao & Jianhong Yang & Hanlin Li & Hongrui Wang & ChengZu Bai, 2022. "A New Estimation Method for Copula Parameters for Multivariate Hydrological Frequency Analysis With Small Sample Sizes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1141-1157, March.
    3. Poornima Unnikrishnan & Kumaraswamy Ponnambalam & Nirupama Agrawal & Fakhri Karray, 2023. "Joint Flood Risks in the Grand River Watershed," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    4. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    5. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    6. Homa Razmkhah & Alireza Fararouie & Amin Rostami Ravari, 2022. "Multivariate Flood Frequency Analysis Using Bivariate Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 729-743, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Li & Shenglian Guo & Feng Xiong & Jun Wang & Yuzuo Xie, 2022. "Comparative Study of Flood Coincidence Risk Estimation Methods in the Mainstream and its Tributaries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 683-698, January.
    2. R. K. Jaiswal & T. R. Nayak & A. K. Lohani & R. V. Galkate, 2022. "Regional flood frequency modeling for a large basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1845-1861, March.
    3. Yan Long & Yilin Yang & Xiaohui Lei & Yu Tian & Youming Li, 2019. "Integrated Assessment Method of Emergency Plan for Sudden Water Pollution Accidents Based on Improved TOPSIS, Shannon Entropy and a Coordinated Development Degree Model," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    4. Yuming Huang & Yanjie Li & Min Liu & Liang Xiao & Fuwan Gan & Jian Jiao, 2022. "Uncertainty Analysis of Flood Control Design Under Multiple Floods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1175-1189, March.
    5. Sabrina Ali & Ataur Rahman, 2022. "Development of a kriging-based regional flood frequency analysis technique for South-East Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2739-2765, December.
    6. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    7. Wenlin Yuan & Xinyu Tu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2021. "Research on the Critical Rainfall of Flash Floods in Small Watersheds Based on the Design of Characteristic Rainfall Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3297-3319, August.
    8. Yan Long & Youming Li & Xiaohui Lei & Yikai Hou & Shuang Guo & Jianwei Sun, 2021. "A Study on Comprehensive Evaluation Methods for Coordinated Development of Water Diversion Projects Based on Advanced SWOT Analysis and Coupling Coordination Model," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    9. Xiaoyan Zhai & Liang Guo & Ronghua Liu & Yongyong Zhang & Yongqiang Zhang, 2021. "Comparing Three Hydrological Models for Flash Flood Simulations in 13 Humid and Semi-humid Mountainous Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1547-1571, March.
    10. Agraw Ali Beshir & Jaemin Song, 2021. "Urbanization and its impact on flood hazard: the case of Addis Ababa, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1167-1190, October.
    11. Yubing Wang & Kai Zhu & Xiao Xiong & Jianuo Yin & Haoran Yan & Yuan Zhang & Hai Liu, 2022. "Assessment of the Ecological Compensation Standards for Cross-Basin Water Diversion Projects from the Perspective of Main Headwater and Receiver Areas," IJERPH, MDPI, vol. 20(1), pages 1-31, December.
    12. Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:1:d:10.1007_s11269-020-02709-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.