IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i7d10.1007_s11269-020-02546-z.html
   My bibliography  Save this article

Evaluation of Global Water Resources Reanalysis Data for Estimating Flood Events in the Brahmaputra River Basin

Author

Listed:
  • Patricia López López

    (Inland Water Systems Unit, Deltares
    Utrecht University)

  • Tashrifa Sultana

    (Institute of Water Modelling (IWM))

  • Mohammed Abdulla Hel Kafi

    (Institute of Water Modelling (IWM))

  • Mohammed Shahadat Hossain

    (Institute of Water Modelling (IWM))

  • Abu Saleh Khan

    (Institute of Water Modelling (IWM))

  • Mohammed Sohel Masud

    (Institute of Water Modelling (IWM))

Abstract

Bangladesh and India are in a long-standing conflict with regard to the sharing of hydro-meteorological information of the Brahamaputra River. Consequently, it limits flood risk management in Bangladesh (the downstream country). Recently developed water resources reanalysis data appear as a promising alternative in providing this information. Further evaluation of these global datasets is needed to understand their capabilities to improve flood events estimation. In this study, the potential of the global water resources reanalysis (WRR) developed within the EU-FP7 project eartH2Observe is critically assessed for detecting and estimating flood events in the Brahmaputra River basin for 1980 to 2012 period. The discharge time series of five large-scale models available in the WRR dataset and two multi-model combinations are evaluated at different temporal resolutions and their performance is compared with a local-scale hydrological model. In situ data and reported damaging flood events compiled from two global disaster databases are used as benchmarks in flood events evaluation. Results show that the WRR data have reasonable skill in detecting flood events, though a significant underestimation of magnitude is found. This study also reveals that the individual large-scale models simulate peak flows similarly or even better than the local-scale model, capturing the hydrological behaviour in the basin and identifying the occurrence and severity of both observed and reported damaging flood events. In conclusion, this study gives insights in the applicability of global hydrological models and datasets for estimating flood events at a local-scale for transboundary rivers in water-sharing countries.

Suggested Citation

  • Patricia López López & Tashrifa Sultana & Mohammed Abdulla Hel Kafi & Mohammed Shahadat Hossain & Abu Saleh Khan & Mohammed Sohel Masud, 2020. "Evaluation of Global Water Resources Reanalysis Data for Estimating Flood Events in the Brahmaputra River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2201-2220, May.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:7:d:10.1007_s11269-020-02546-z
    DOI: 10.1007/s11269-020-02546-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02546-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02546-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Monirul Qader Mirza, 2003. "Three Recent Extreme Floods in Bangladesh: A Hydro-Meteorological Analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 35-64, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dandan Zhang & Juqin Shen & Pengfei Liu & Fuhua Sun, 2020. "Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method," IJERPH, MDPI, vol. 17(16), pages 1-19, August.
    2. Victoria M. Garibay & Margaret W. Gitau & Nicholas Kiggundu & Daniel Moriasi & Fulgence Mishili, 2021. "Evaluation of Reanalysis Precipitation Data and Potential Bias Correction Methods for Use in Data-Scarce Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1587-1602, March.
    3. Geert Sterk & Frederiek Sperna-Weiland & Marc Bierkens, 2020. "Guest Editorial: Special Issue on Global Hydrological Datasets for Local Water Management Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2111-2116, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha A. Mohamed & Mohamed E. El-Raey, 2020. "Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in El-Arish City, North Sinai, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 707-728, June.
    2. Martina Linnenluecke & Andrew Griffiths, 2012. "Assessing organizational resilience to climate and weather extremes: complexities and methodological pathways," Climatic Change, Springer, vol. 113(3), pages 933-947, August.
    3. World Bank, 2010. "Economic of Adaptation to Climate Change : Bangladesh, Volume 1. Main Report," World Bank Publications - Reports 12837, The World Bank Group.
    4. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    5. Atta-ur-Rahman & Amir Khan, 2013. "Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 887-904, March.
    6. Akm Islam & Anisul Haque & Sujit Bala, 2010. "Hydrologic characteristics of floods in Ganges–Brahmaputra–Meghna (GBM) delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 797-811, September.
    7. Abu Ali, 2007. "September 2004 Flood Event in Southwestern Bangladesh: A Study of its Nature, Causes, and Human Perception and Adjustments to a New Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 89-111, January.
    8. Y. Yang & Patrick Ray & Casey Brown & Abedalrazq Khalil & Winston Yu, 2015. "Estimation of flood damage functions for river basin planning: a case study in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2773-2791, February.
    9. Sumaiya Jarin Ahammed & Eun-Sung Chung & Shamsuddin Shahid, 2018. "Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    10. Atta-ur-Rahman & Amir Khan, 2011. "Analysis of flood causes and associated socio-economic damages in the Hindukush region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1239-1260, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:7:d:10.1007_s11269-020-02546-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.