IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i7d10.1007_s11269-018-1933-5.html
   My bibliography  Save this article

Approach for Estimating Available Consumable Water for Human Activities in a River Basin

Author

Listed:
  • Bingfang Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hongwei Zeng

    (Chinese Academy of Sciences)

  • Nana Yan

    (Chinese Academy of Sciences)

  • Miao Zhang

    (Chinese Academy of Sciences)

Abstract

Water is vital for economic development and environmental sustainability in arid and semi-arid basins. Management of water resource requires good understanding of available water for human consumption. Evapotranspiration (ET) is an important component of the hydrological cycle and represents the amount of water lost to the atmosphere in a basin. This study proposes a new approach to estimate available consumable water for human activities (ACW) in a basin based on precipitation, natural ET, and uncontrollable outflow, thus capping water use for human consumption in a basin. The ACW is illustrated for the Hai Basin in North China, where the average ACW from 2001 to 2012 for the entire basin is estimated at 31.97 × 109m3 yr.−1, varying between 18.61 × 109m3yr−1 in 2002 and 42.60 × 109m3yr−1 in 2003. A water balance analysis for the basin indicates that the aquifer water depletion in Hai Basin for 2001–2012 is 5.23 × 109m3yr−1. Compared to existing water resources assessment, ACW provides an easier approach to water management planning as no hydrological data are required, only data on precipitation and ET, supported by landcover data.

Suggested Citation

  • Bingfang Wu & Hongwei Zeng & Nana Yan & Miao Zhang, 2018. "Approach for Estimating Available Consumable Water for Human Activities in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2353-2368, May.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1933-5
    DOI: 10.1007/s11269-018-1933-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1933-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1933-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
    3. Wu, Bingfang & Jiang, Liping & Yan, Nana & Perry, Chris & Zeng, Hongwei, 2014. "Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China," Agricultural Water Management, Elsevier, vol. 145(C), pages 145-153.
    4. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    5. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    6. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuming Lu & Bingfang Wu & Nana Yan & Weiwei Zhu & Hongwei Zeng & Linjiang Wang, 2021. "Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data," Land, MDPI, vol. 10(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    4. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    5. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    7. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    8. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    9. U. Behera & P. Panigrahi & A. Sarangi, 2012. "Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2605-2623, July.
    10. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    11. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    12. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    13. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    14. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    15. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    16. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    17. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    18. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    19. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    20. Mainuddin, Mohammed & Kirby, Mac, 2009. "Spatial and temporal trends of water productivity in the lower Mekong River Basin," Agricultural Water Management, Elsevier, vol. 96(11), pages 1567-1578, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1933-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.