IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i14d10.1007_s11269-018-2076-4.html
   My bibliography  Save this article

Real-Time Operation of Pumping Systems for Urban Flood Mitigation: Single-Period vs. Multi-Period Optimization

Author

Listed:
  • Fatemeh Jafari

    (Amirkabir University of Technology)

  • S. Jamshid Mousavi

    (Amirkabir University of Technology)

  • Jafar Yazdi

    (Shahid Beheshti University)

  • Joong Hoon Kim

    (Korea University)

Abstract

To reduce flood risk in urban regions, it is important to optimize the performance of operational elements such as gates and pumps. This paper compares the performances of two approaches of multi-period and single-period simulation-optimization that are used to derive real-time control policies for operating urban drainage systems. The EPA storm water management model (SWMM), converting real-time rainfall data to surface runoff at network control points, i.e. pump stations, is linked to the particle swarm optimization (PSO) algorithm, evaluating the system operation performance measure (objective function) for different sets of control policies. A prototype network in a portion of the Seoul urban drainage system is used to investigate the efficiency of the proposed approaches. Results justify the high efficiency of multi-period optimization, leading to 32 and 29% average reductions in peak water level violations from a pre-defined permissible threshold at target points and the number of pump switches, respectively, in comparison with the online single-period optimization. The myopic policies derived by single-period optimization are not reliable, and in some cases, they even perform worse than ad-hoc policies applied by system operators based on their past experiences.

Suggested Citation

  • Fatemeh Jafari & S. Jamshid Mousavi & Jafar Yazdi & Joong Hoon Kim, 2018. "Real-Time Operation of Pumping Systems for Urban Flood Mitigation: Single-Period vs. Multi-Period Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4643-4660, November.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:14:d:10.1007_s11269-018-2076-4
    DOI: 10.1007/s11269-018-2076-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2076-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2076-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    2. Bahram Malekmohammadi & Banafsheh Zahraie & Reza Kerachian, 2010. "A real-time operation optimization model for flood management in river-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 459-482, June.
    3. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    4. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenliang Liao & Zhiyu Zhang & Wenchong Tian & Xianyong Gu & Jiaqiang Xie, 2022. "Comparison of Real-time Control Methods for CSO Reduction with Two Evaluation Indices: Computing Load Rate and Double Baseline Normalized Distance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4469-4484, September.
    2. Kun Xie & Jong-Suk Kim & Linjuan Hu & Hua Chen & Chong-Yu Xu & Jung Hwan Lee & Jie Chen & Sun-Kwon Yoon & Di Zhu & Shaobo Zhang & Yang Liu, 2023. "Intelligent Scheduling of Urban Drainage Systems: Effective Local Adaptation Strategies for Increased Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 91-111, January.
    3. J. Yazdi, 2019. "Optimal Operation of Urban Storm Detention Ponds for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2109-2121, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Moridi & J. Yazdi, 2017. "Optimal Allocation of Flood Control Capacity for Multi-Reservoir Systems Using Multi-Objective Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4521-4538, November.
    2. Umut Güvengir & Secil Savasaneril & A. Burcu Altan-Sakarya & Serkan Buhan, 2021. "Short-Term Flood Control and Long-Term Energy Maximization in Multi-reservoir Systems Using Improved Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4293-4307, October.
    3. Ayoub Tahiri & David Ladeveze & Pascale Chiron & Bernard Archimede & Ludovic Lhuissier, 2018. "Reservoir Management Using a Network Flow Optimization Model Considering Quadratic Convex Cost Functions on Arcs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3505-3518, August.
    4. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    5. Lihua Chen & Jing Yu & Jin Teng & Hang Chen & Xiang Teng & Xuefang Li, 2022. "Optimizing Joint Flood Control Operating Charts for Multi–reservoir System Based on Multi–group Piecewise Linear Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3305-3325, July.
    6. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    7. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    8. Yongqi Liu & Hui Qin & Li Mo & Yongqiang Wang & Duan Chen & Shusen Pang & Xingli Yin, 2019. "Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 337-354, January.
    9. Chen Chen & Yanbin Yuan & Xiaohui Yuan, 2017. "An Improved NSGA-III Algorithm for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4469-4483, November.
    10. Morteza Zargar & Hossein M. V. Samani & Ali Haghighi, 2016. "Optimization of gated spillways operation for flood risk management in multi-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 299-320, May.
    11. Mohammad Ehteram & Hojat Karami & Saeed Farzin, 2018. "Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2539-2560, May.
    12. Ji-Jian Lian & Xin-Yu Guo & Chao Ma & Kui Xu, 2019. "Optimal Reservoir Flood Control Operation Using a Hedging Model and Considering the Near-Field Vibrations Induced by Flood Release," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2645-2663, June.
    13. Hamid Bashiri-Atrabi & Kourosh Qaderi & David Rheinheimer & Erfaneh Sharifi, 2015. "Application of Harmony Search Algorithm to Reservoir Operation Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5729-5748, December.
    14. Di Zhu & Hua Chen & Yanlai Zhou & Yadong Mei & Xinfa Xu & Shenglian Guo, 2022. "A Triple-stage Operation Method for Deriving Operation Rules for Cascade Reservoirs during Catastrophic Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4863-4883, October.
    15. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    16. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    17. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    18. V. Ramaswamy & F. Saleh, 2020. "Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 989-1004, February.
    19. D. A. Sabӑu & Gh. Şerban & P. Breţcan & D. Dunea & D. Petrea & I. Rus & D. Tanislav, 2023. "Combining radar quantitative precipitation estimates (QPEs) with distributed hydrological model for controlling transit of flash-flood upstream of crowded human habitats in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1209-1238, March.
    20. Hai-tao Chen & Wen-chuan Wang & Kwok-wing Chau & Lei Xu & Ji He, 2021. "Flood Control Operation of Reservoir Group Using Yin-Yang Firefly Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5325-5345, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:14:d:10.1007_s11269-018-2076-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.