IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i14d10.1007_s11269-016-1503-7.html
   My bibliography  Save this article

Methods of Assessment of Water Losses in Water Supply Systems: a Review

Author

Listed:
  • Taha AL-Washali

    (Sana’a University
    UNESCO-IHE Institute for Water Education)

  • Saroj Sharma

    (UNESCO-IHE Institute for Water Education)

  • Maria Kennedy

    (UNESCO-IHE Institute for Water Education)

Abstract

This paper reviews Water Loss Assessment methods in water supply systems. There’re three main methods: Minimum Night Flow (MNF) analysis, Bursts And Background Estimates (BABE), and Top-Down Water Balance. MNF analysis provides actual measurements whose accuracy can be evaluated. It requires intensive field work, though. The limitation of MNF application is the sensitivity of two parameters; average pressure which is rarely accurate, and estimation of the night consumption. Assessing real losses with the factors generated by the BABE model should not be conducted unless there is no other option due to its excessive assumptions. Instead, the method should be a supplementary tool to break down the volume of real losses into its sub-components. The Top-Down Water Balance is neither pressure-dependent nor extensive-field-work method. However, its assumptions of apparent losses aren’t appropriate for all utilities. The lack of an objective methodology for estimating unauthorized consumption is a major limitation, and research on its estimation is demanding.

Suggested Citation

  • Taha AL-Washali & Saroj Sharma & Maria Kennedy, 2016. "Methods of Assessment of Water Losses in Water Supply Systems: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 4985-5001, November.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1503-7
    DOI: 10.1007/s11269-016-1503-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1503-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1503-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaber Alkasseh & Mohd Adlan & Ismail Abustan & Hamidi Aziz & Abu Hanif, 2013. "Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley, Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1439-1455, March.
    2. M. Tabesh & A. Yekta & R. Burrows, 2009. "An Integrated Model to Evaluate Losses in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 477-492, February.
    3. Abbas Al-Omari, 2013. "A Methodology for the Breakdown of NRW into Real and Administrative Losses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1913-1930, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    2. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    3. Andrés Ortega-Ballesteros & Francisco Iturriaga-Bustos & Alberto-Jesus Perea-Moreno & David Muñoz-Rodríguez, 2022. "Advanced Pressure Management for Sustainable Leakage Reduction and Service Optimization: A Case Study in Central Chile," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Mahdi Abravani & Hassan Saghi, 2017. "Introducing a Novel Flexible Conjunction System to Pressure Control in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4323-4338, October.
    5. Meireles, Inês & Sousa, Vitor & Matos, José Pedro & Cruz, Carlos Oliveira, 2023. "Determinants of water loss in Portuguese utilities," Utilities Policy, Elsevier, vol. 83(C).
    6. Pereira Teodoro da Silva, Kairo & Kalbusch, Andreza & Henning, Elisa, 2023. "Detection of unauthorized consumption in water supply systems: A case study using logistic regression," Utilities Policy, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allisa G. Hastie & Christopher M. Chini & Ashlynn S. Stillwell, 2022. "A mass balance approach to urban water analysis using multi‐resolution data," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 213-224, February.
    2. Elias Farah & Isam Shahrour, 2017. "Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4821-4833, December.
    3. Pham Duc Dai & Pu Li, 2016. "Optimal Pressure Regulation in Water Distribution Systems Based on an Extended Model for Pressure Reducing Valves," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1239-1254, February.
    4. Ioan Sarbu, 2014. "Nodal Analysis of Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3143-3159, August.
    5. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    6. Christian Massari & Tian-Chyi Yeh & Bruno Brunone & Marco Ferrante & Silvia Meniconi, 2013. "Diagnosis of Pipe Systems by means of a Stochastic Successive Linear Estimator," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4637-4654, October.
    7. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    8. M. Fontana & D. Morais, 2013. "Using Promethee V to Select Alternatives so as to Rehabilitate Water Supply Network with Detected Leaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4021-4037, September.
    9. Şişman, Eyüp & Kızılöz, Burak, 2020. "Trend-risk model for predicting non-revenue water: An application in Turkey," Utilities Policy, Elsevier, vol. 67(C).
    10. Marco Fagiani & Stefano Squartini & Leonardo Gabrielli & Marco Severini & Francesco Piazza, 2016. "A Statistical Framework for Automatic Leakage Detection in Smart Water and Gas Grids," Energies, MDPI, vol. 9(9), pages 1-25, August.
    11. Ali Haghighi & Helena Ramos, 2012. "Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2347-2363, June.
    12. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    13. S. Alvisi, 2015. "A New Procedure for Optimal Design of District Metered Areas Based on the Multilevel Balancing and Refinement Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4397-4409, September.
    14. Harrison Mutikanga & Saroj Sharma & Kalanithy Vairavamoorthy, 2011. "Multi-criteria Decision Analysis: A Strategic Planning Tool for Water Loss Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3947-3969, November.
    15. Jaber Alkasseh & Mohd Adlan & Ismail Abustan & Hamidi Aziz & Abu Hanif, 2013. "Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley, Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1439-1455, March.
    16. I. Karadirek & S. Kara & G. Yilmaz & A. Muhammetoglu & H. Muhammetoglu, 2012. "Implementation of Hydraulic Modelling for Water-Loss Reduction Through Pressure Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2555-2568, July.
    17. Montserrat Núñez & Jordi Oliver-Solà & Joan Rieradevall & Xavier Gabarrell, 2010. "Water Management in Integrated Service Systems: Accounting for Water Flows in Urban Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1583-1604, June.
    18. Sara Nazif & Mohammad Karamouz & Massoud Tabesh & Ali Moridi, 2010. "Pressure Management Model for Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 437-458, February.
    19. Mohd Abdy Sayyed & Rajesh Gupta & Tiku Tanyimboh, 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3227-3242, July.
    20. Massoud Tabesh & Abbas Roozbahani & Bardia Roghani & Niousha Rasi Faghihi & Reza Heydarzadeh, 2018. "Risk Assessment of Factors Influencing Non-Revenue Water Using Bayesian Networks and Fuzzy Logic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3647-3670, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1503-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.