IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i10d10.1007_s11269-016-1364-0.html
   My bibliography  Save this article

Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction

Author

Listed:
  • Rajesh Kumar

    (Sharda University)

  • Shaktiman Singh

    (Sharda University)

  • Ramesh Kumar

    (Sharda University)

  • Atar Singh

    (Sharda University)

  • Anshuman Bhardwaj

    (Sharda University
    Luleå University of Technology)

  • Lydia Sam

    (Sharda University
    Defence Terrain Research Laboratory)

  • Surjeet Singh Randhawa

    (State Council for Science, Technology. & Environment)

  • Akhilesh Gupta

    (Department of Science & Technology)

Abstract

The reconstruction of glacio-hydrological records for the data deficient Himalayan catchments is needed in order to study the past and future water availability. The study provides outcomes of a glacio-hydrological model based on the degree-day approach. The model simulates the discharge and mass balance for glacierised Shaune Garang catchment. The degree-day factors for different land covers, used in the model, were estimated using daily stake measurements on Shaune Garang glacier and they were found to be varying between 2.6 ± 0.4 and 9.3 ± 0.3 mm °C−1day−1. The model is validated using observed discharge during ablation season of 2014 with coefficient of determination (R2) 0.90 and root mean square error (RMSE) 1.05 m3 sec−1. The model is used to simulate discharge from 1985 to 2008 and mass balance from 2001 to 2008. The model results show significant contribution of seasonal snow and ice melt in total discharge of the catchment, especially during summer. We observe the maximum discharge in July having maximum contribution from snow and ice melt. The annual melt season discharge shows following a decreasing trend in the simulation period. The reconstructed mass balance shows mass loss of 0.89 m we per year between 2001 and 2008 with slight mass gain during 2000/01 and 2004/05 hydrological years.

Suggested Citation

  • Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1364-0
    DOI: 10.1007/s11269-016-1364-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1364-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1364-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2006. "Spatial Distribution and Seasonal Variability of Rainfall in a Mountainous Basin in the Himalayan Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(4), pages 489-508, August.
    2. Sanjay Jain & Pratap Singh & A. Saraf & S. Seth, 2003. "Estimation of Sediment Yield for a Rain, Snow and Glacier Fed River in the Western Himalayan Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 377-393, October.
    3. Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
    4. Andreas Kääb & Etienne Berthier & Christopher Nuth & Julie Gardelle & Yves Arnaud, 2012. "Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas," Nature, Nature, vol. 488(7412), pages 495-498, August.
    5. A. F. Lutz & W. W. Immerzeel & A. B. Shrestha & M. F. P. Bierkens, 2014. "Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation," Nature Climate Change, Nature, vol. 4(7), pages 587-592, July.
    6. Vaibhav Garg & V. Jothiprakash, 2012. "Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 799-840, February.
    7. Prakash Tiwari & Bhagwati Joshi, 2012. "Environmental Changes and Sustainable Development of Water Resources in the Himalayan Headwaters of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 883-907, March.
    8. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    9. Ashoke Basistha & D. Arya & N. Goel, 2008. "Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1325-1346, October.
    10. A. Dimri & S. Dash, 2012. "Wintertime climatic trends in the western Himalayas," Climatic Change, Springer, vol. 111(3), pages 775-800, April.
    11. Sanjay Jain & Ajanta Goswami & A. Saraf, 2009. "Role of Elevation and Aspect in Snow Distribution in Western Himalaya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 71-83, January.
    12. Sanjay Jain & Ajanta Goswami & Arun Saraf, 2010. "Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1763-1777, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Azmat & Muhammad Uzair Qamar & Shakil Ahmed & Muhammad Adnan Shahid & Ejaz Hussain & Sajjad Ahmad & Rao Arsalan Khushnood, 2018. "Ensembling Downscaling Techniques and Multiple GCMs to Improve Climate Change Predictions in Cryosphere Scarcely-Gauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3155-3174, July.
    2. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    2. Haoyu Jin & Qin Ju & Zhongbo Yu & Jie Hao & Huanghe Gu & Henan Gu & Wei Li, 2019. "Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 931-950, November.
    3. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    4. Jessica L. Raff & Steven L. Goodbred & Jennifer L. Pickering & Ryan S. Sincavage & John C. Ayers & Md. Saddam Hossain & Carol A. Wilson & Chris Paola & Michael S. Steckler & Dhiman R. Mondal & Jean-Lo, 2023. "Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Merete Tallaksen & Sharad K. Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    6. Myoung-Jin Um & Hyeseon Yun & Woncheol Cho & Jun-Haeng Heo, 2010. "Analysis of Orographic Precipitation on Jeju-Island Using Regional Frequency Analysis and Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1461-1487, May.
    7. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Tallaksen & Sharad Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    8. Nazzareno Diodato & Gianni Tartari & Gianni Bellocchi, 2010. "Geospatial Rainfall Modelling at Eastern Nepalese Highland from Ground Environmental Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2703-2720, September.
    9. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    10. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    11. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    12. Manish Goyal & Vishal Singh & Akshay Meena, 2015. "Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2875-2894, June.
    13. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Jet-chau Wen & Yen-jen Lee & Shin-jen Cheng & Ju-huang Lee, 2014. "Changes of rural to urban areas in hydrograph characteristics on watershed divisions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 887-909, November.
    15. Safar Marofi & Hossein Tabari & Hamid Abyaneh, 2011. "Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1417-1435, March.
    16. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    17. Bekele Debele & Raghavan Srinivasan & A. Gosain, 2010. "Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1065-1088, April.
    18. Kimberley R. Miner & Paul Andrew Mayewski & Mary Hubbard & Kenny Broad & Heather Clifford & Imogen Napper & Ananta Gajurel & Corey Jaskolski & Wei Li & Mariusz Potocki & John Priscu, 2021. "A Perspective of the Cumulative Risks from Climate Change on Mt. Everest: Findings from the 2019 Expedition," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
    19. Shishant Gupta & Chandra Shekhar Prasad Ojha & Vijay P. Singh & Adebayo J. Adeloye & Sanjay K. Jain, 2023. "Pixel-Based Soil Loss Estimation and Prioritization of North-Western Himalayan Catchment Based on Revised Universal Soil Loss Equation (RUSLE)," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    20. H. Coskun & Ugur Alganci & Ebru Eris & Necati Agıralioglu & H. Cigizoglu & Levent Yilmaz & Z. Toprak, 2010. "Remote Sensing and GIS Innovation with Hydrologic Modelling for Hydroelectric Power Plant (HPP) in Poorly Gauged Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3757-3772, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1364-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.