IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i3p731-747.html
   My bibliography  Save this article

Influence of Hydropower Development on Flow Regime in the Zambezi River Basin for Different Scenarios of Environmental Flows

Author

Listed:
  • T. Cohen Liechti
  • J. Matos
  • J.-L. Boillat
  • A. Schleiss

Abstract

As the need for energy is increasing, the challenges in the future are to operate existing large hydraulic schemes in more sustainable ways and to develop future water resources projects that are able to achieve a better balance between environmental and socio-economic demands. In this context, scenarios combining different levels of environmental requirements as well as hydropower developments were simulated at a daily time step with a hydraulic-hydrological model (the Soil and Water Assessment Tool) over the Zambezi River Basin. For each scenario, the hydropower operation rules, the mean annual energy produced and the firm powers were considered. The impact on the flow regime was characterized by a hydrological alteration indicator and Pardé coefficients. In the present state, the total mean annual energy production is about 30,000 GWh with a firm power of about 3,000 MW. The impact of the dams on the flow regime is low in the Kafue flats and the Zambezi delta and high in the Mana Pools. The new run-of-river hydropower plants aim to increase the mean energy production by more than 90 % and the firm power by about 40 %. Releasing e-flows can reduce the impact in the Kafue flats and in the Zambezi delta, with a loss of less than 10 % of mean annual energy production and about 15 % of the firm power at Itezhi-Tezhi and Cahora Bassa. This reveals that a compromise between energy production and environmental sustainability can be reached. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • T. Cohen Liechti & J. Matos & J.-L. Boillat & A. Schleiss, 2015. "Influence of Hydropower Development on Flow Regime in the Zambezi River Basin for Different Scenarios of Environmental Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 731-747, February.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:731-747
    DOI: 10.1007/s11269-014-0838-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0838-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0838-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - Summary Report," World Bank Publications - Reports 2958, The World Bank Group.
    2. Xin-Ming Zhang & Li-ping Wang & Ji-wei Li & Yan-ke Zhang, 2013. "Self-Optimization Simulation Model of Short-Term Cascaded Hydroelectric System Dispatching Based on the Daily Load Curve," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5045-5067, December.
    3. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    4. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - Basin Development Scenarios," World Bank Publications - Reports 2959, The World Bank Group.
    5. Georges Comair & Daene McKinney & David Maidment & Gonzalo Espinoza & Harish Sangiredy & Abbas Fayad & Fernando Salas, 2014. "Hydrology of the Jordan River Basin: A GIS-Based System to Better Guide Water Resources Management and Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 933-946, March.
    6. c. gandolfi & g. guariso & d. togni, 1997. "Optimal Flow Allocation in the Zambezi River System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(5), pages 377-393, October.
    7. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - State of the Basin," World Bank Publications - Reports 2961, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.
    2. Erik Porse & Samuel Sandoval-Solis & Belize Lane, 2015. "Integrating Environmental Flows into Multi-Objective Reservoir Management for a Transboundary, Water-Scarce River Basin: Rio Grande/Bravo," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2471-2484, June.
    3. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    4. Cate Brown & Dirk Campher & Jackie King, 2020. "Status and trends in EFlows in southern Africa," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 66-88, February.
    5. Han-Chung Yang & Jian-Ping Suen & Shih-Kai Chou, 2016. "Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4571-4584, October.
    6. Yinghou Huang & Binbin Huang & Tianling Qin & Hanjiang Nie & Jianwei Wang & Xing Li & Zhenqian Shen, 2019. "Assessment of Hydrological Changes and Their Influence on the Aquatic Ecology over the last 58 Years in Ganjiang Basin, China," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    7. Jacob D. Petersen-Perlman, 2016. "Projecting River Basin Resilience in the Zambezi River Basin through Global Analyses and Basin Realities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1987-2003, April.
    8. Yong Peng & Xinguo Sun & Xiaoli Zhang & Huicheng Zhou & Zixin Zhang, 2017. "A Flood Forecasting Model that Considers the Impact of Hydraulic Projects by the Simulations of the Aggregate reservoir’s Retaining and Discharging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1031-1045, February.
    9. A. Palla & I. Gnecco & P. Barbera & M. Ivaldi & D. Caviglia, 2016. "An Integrated GIS Approach to Assess the Mini Hydropower Potential," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2979-2996, July.
    10. Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulenga Kalumba & Edwin Nyirenda & Imasiku Nyambe & Stefaan Dondeyne & Jos Van Orshoven, 2022. "Machine Learning Techniques for Estimating Hydraulic Properties of the Topsoil across the Zambezi River Basin," Land, MDPI, vol. 11(4), pages 1-22, April.
    2. Ishmael B. M. Kosamu & Wouter T. De Groot & Patrick S. Kambewa & Geert R. De Snoo, 2012. "Institutions and Ecosystem-Based Development Potentials of the Elephant Marsh, Malawi," Sustainability, MDPI, vol. 4(12), pages 1-20, December.
    3. Jacob D. Petersen-Perlman, 2016. "Projecting River Basin Resilience in the Zambezi River Basin through Global Analyses and Basin Realities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1987-2003, April.
    4. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.
    5. Sylvester Mpandeli & Luxon Nhamo & Sithabile Hlahla & Dhesigen Naidoo & Stanley Liphadzi & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2020. "Migration under Climate Change in Southern Africa: A Nexus Planning Perspective," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    6. Nhamo, Luxon & Ndlela, B. & Nhemachena, Charles & Mabhaudhi, T. & Mpandeli, S. & Matchaya, Greenwell, 2018. "The water-energy-food nexus: climate risks and opportunities in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-18..
    7. Charles Fant & Yohannes Gebretsadik & Alyssa McCluskey & Kenneth Strzepek, 2015. "An uncertainty approach to assessment of climate change impacts on the Zambezi River Basin," Climatic Change, Springer, vol. 130(1), pages 35-48, May.
    8. Van Dijk, M. & You, L. & Havlik, P. & Palazzo, A. & Mosnier, A., 2018. "Generating high-resolution national crop distribution maps: Combining statistics, gridded data and surveys using an optimization approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276038, International Association of Agricultural Economists.
    9. Shuo Ouyang & Jianzhong Zhou & Chunlong Li & Xiang Liao & Hao Wang, 2015. "Optimal Design for Flood Limit Water Level of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 445-457, January.
    10. Yong Peng & Anbang Peng & Xiaoli Zhang & Huicheng Zhou & Lin Zhang & Wenzhong Wang & Zixin Zhang, 2017. "Multi-Core Parallel Particle Swarm Optimization for the Operation of Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 27-41, January.
    11. Duan Chen & Ruonan Li & Qiuwen Chen & Desuo Cai, 2015. "Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through A Time-Nested Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3371-3386, July.
    12. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    13. Zitong Yang & Xianfeng Huang & Jiao Liu & Guohua Fang, 2021. "Optimal Operation of Floodwater Resources Utilization of Lakes in South-to-North Water Transfer Eastern Route Project," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    14. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    15. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    16. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    17. M. Ahmadi & Omid Bozorg Haddad & M. Mariño, 2014. "Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 131-147, January.
    18. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    19. O. Haddad & M. Tabari & E. Fallah-Mehdipour & M. Mariño, 2013. "Groundwater Model Calibration by Meta-Heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2515-2529, May.
    20. Chunxue Yu & Xinan Yin & Zhifeng Yang & Zhi Dang, 2019. "Sustainable Water Resource Management of Regulated Rivers under Uncertain Inflow Conditions Using a Noisy Genetic Algorithm," IJERPH, MDPI, vol. 16(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:731-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.