IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i1p165-190.html
   My bibliography  Save this article

Elitist Continuous Ant Colony Optimization Algorithm for Optimal Management of Coastal Aquifers

Author

Listed:

Abstract

This paper presents an evolutionary based approach to achieve optimal management of a coastal aquifer to control saltwater intrusion. An improved Elitist Continuous Ant Colony Optimization (ECACO) algorithm is employed for optimal control variables setting of coastal aquifer management problem. The objectives of the optimal management are; maximizing the total water-pumping rate, while controlling the drawdown limits and protecting the wells from saltwater intrusion. Since present work is one of the first efforts towards the application of an ECACO algorithm, sharp interface solution for steady state problem is first exploited. The performance of the developed optimization model is evaluated through application examples available in the literature. The comparisons indicate the applicability of the ECACO algorithm. In the second approach, the numerical simulation is combined with ECACO algorithm. In this model, through some simple schemes, such as continuity equations in the porous media cells and existing hydraulic systems in the study area, further details can be investigated. The evaluation results show the potential applicability of the proposed numerical based model for optimal management of coastal aquifers. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Behzad Ataie-Ashtiani & Hamed Ketabchi, 2011. "Elitist Continuous Ant Colony Optimization Algorithm for Optimal Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 165-190, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:165-190
    DOI: 10.1007/s11269-010-9693-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9693-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9693-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Madadgar & A. Afshar, 2009. "An Improved Continuous Ant Algorithm for Optimization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2119-2139, August.
    2. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    3. Rajib Bhattacharjya & Bithin Datta, 2005. "Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 295-320, June.
    4. Júlio Ferreira da Silva & Naim Haie, 2007. "Optimal Locations of Groundwater Extractions in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1299-1311, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hany Abd-Elhamid & Akbar Javadi, 2011. "A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2755-2780, September.
    2. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    3. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    4. Abbas Afshar & Fariborz Massoumi & Amin Afshar & Miquel Mariño, 2015. "State of the Art Review of Ant Colony Optimization Applications in Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3891-3904, September.
    5. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    6. Elmira Valipour & Hamed Ketabchi & Reza Safari shali & Saeed Morid, 2023. "Equity, Social Welfare, and Economic Benefit Efficiency in the Optimal Allocation of Coastal Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2969-2990, June.
    7. Domenico Baú, 2012. "Planning of Groundwater Supply Systems Subject to Uncertainty Using Stochastic Flow Reduced Models and Multi-Objective Evolutionary Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2513-2536, July.
    8. Asaad M. Armanuos & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Assessing the Effectiveness of Using Recharge Wells for Controlling the Saltwater Intrusion in Unconfined Coastal Aquifers with Sloping Beds: Numerical Study," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    9. Mahmoud Mohammad Rezapour Tabari & Mahbobeh Abyar, 2022. "Development a Novel Integrated Distributed Multi-objective Simulation-optimization Model for Coastal Aquifers Management Using NSGA-II and GMS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 75-102, January.
    10. J. Sreekanth & Bithin Datta, 2011. "Comparative Evaluation of Genetic Programming and Neural Network as Potential Surrogate Models for Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3201-3218, October.
    11. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    12. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    2. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    3. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    4. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    5. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    6. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    7. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    8. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    9. Om Prakash Vats & Bhrigumani Sharma & Juergen Stamm & Rajib Kumar Bhattacharjya, 2020. "Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3551-3563, September.
    10. Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
    11. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    12. Abbas Afshar & Fariborz Masoumi & Sam Solis, 2015. "Reliability Based Optimum Reservoir Design by Hybrid ACO-LP Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2045-2058, April.
    13. Ozgur Kisi & Armin Azad & Hamed Kashi & Amir Saeedian & Seyed Ali Asghar Hashemi & Salar Ghorbani, 2019. "Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 847-861, January.
    14. Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
    15. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    16. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2012. "Design of wind farm layout using ant colony algorithm," Renewable Energy, Elsevier, vol. 44(C), pages 53-62.
    17. Martin Schlüter & Matthias Gerdts, 2010. "The oracle penalty method," Journal of Global Optimization, Springer, vol. 47(2), pages 293-325, June.
    18. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    19. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    20. Shao, Peng & Liang, Ying & Li, Guangquan & Li, Xing & Yang, Le, 2023. "Birefringence learning: A new global optimization technology model based on birefringence principle in application on artificial bee colony," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 470-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:165-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.