IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v29y2020i1d10.1007_s11749-019-00653-7.html
   My bibliography  Save this article

Parameter estimation and diagnostic tests for INMA(1) processes

Author

Listed:
  • Boris Aleksandrov

    (Helmut Schmidt University)

  • Christian H. Weiß

    (Helmut Schmidt University)

Abstract

The INMA(1) model, an integer-valued counterpart to the usual moving-average model of order 1, gained recently importance for insurance applications. After a comprehensive discussion of stochastic properties of the INMA(1) model, we develop diagnostic tests regarding the marginal distribution (overdispersion, zero inflation) and the autocorrelation structure. We also derive formulae for correcting the bias of point estimators and for constructing joint confidence regions. These inferential approaches rely on asymptotic properties, the finite-sample performance of which is investigated with simulations. A real-data example illustrates the application of the novel diagnostic tools.

Suggested Citation

  • Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
  • Handle: RePEc:spr:testjl:v:29:y:2020:i:1:d:10.1007_s11749-019-00653-7
    DOI: 10.1007/s11749-019-00653-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00653-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00653-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brännäs, Kurt & Quoreshi, Shahiduzzaman, 2004. "Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks," Umeå Economic Studies 637, Umeå University, Department of Economics.
    2. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    3. Cossette, Hélène & Marceau, Étienne & Toureille, Florent, 2011. "Risk models based on time series for count random variables," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 19-28, January.
    4. Andreia Hall & Manuel Scotto & João Cruz, 2010. "Extremes of integer-valued moving average sequences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 359-374, August.
    5. Cossette, Hélène & Marceau, Etienne & Maume-Deschamps, Véronique, 2010. "Discrete-Time Risk Models Based on Time Series for Count Random Variables," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 123-150, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Aleksandrov & Christian H. Weiß & Carsten Jentsch, 2022. "Goodness‐of‐fit tests for Poisson count time series based on the Stein–Chen identity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 35-64, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    2. Xiang Hu & Lianzeng Zhang, 2016. "Ruin Probability in a Correlated Aggregate Claims Model with Common Poisson Shocks: Application to Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 675-689, September.
    3. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    4. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    5. Harry Joe, 2019. "Likelihood Inference for Generalized Integer Autoregressive Time Series Models," Econometrics, MDPI, vol. 7(4), pages 1-13, October.
    6. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    7. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    8. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    9. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    10. Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
    11. Radhakumari Maya & Christophe Chesneau & Anuresha Krishna & Muhammed Rasheed Irshad, 2022. "Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications," Stats, MDPI, vol. 5(3), pages 1-18, August.
    12. Subhankar Chattopadhyay & Raju Maiti & Samarjit Das & Atanu Biswas, 2022. "Change‐point analysis through integer‐valued autoregressive process with application to some COVID‐19 data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 4-34, February.
    13. Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
    14. Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.
    15. Tito Lívio & Naushad Mamode Khan & Marcelo Bourguignon & Hassan S. Bakouch, 2018. "An INAR(1) model with Poisson-Lindley innovations," Economics Bulletin, AccessEcon, vol. 38(3), pages 1505-1513.
    16. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    17. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    18. Qingchun Zhang & Dehui Wang & Xiaodong Fan, 2020. "A negative binomial thinning‐based bivariate INAR(1) process," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 517-537, November.
    19. Hélène Cossette & Etienne Marceau & Véronique Maume-Deschamps, 2011. "Adjustment Coefficient for Risk Processes in Some Dependent Contexts," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 695-721, December.
    20. Christian H. Weiß & Martin H.-J. M. Feld & Naushad Mamode Khan & Yuvraj Sunecher, 2019. "INARMA Modeling of Count Time Series," Stats, MDPI, vol. 2(2), pages 1-37, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:29:y:2020:i:1:d:10.1007_s11749-019-00653-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.