IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i4d10.1007_s11749-019-00681-3.html
   My bibliography  Save this article

Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem

Author

Listed:
  • Denis Devaud

    (Université de Neuchâtel)

  • Yves Tillé

    (Université de Neuchâtel)

Abstract

In 1992, in a famous paper, Deville and Särndal proposed the calibration method in order to adjust samples on known population totals. This paper had a very important impact in the theory and practice of survey statistics. In this paper, we propose a rigorous formalization of the calibration problem viewed as an optimization problem. We examine the main calibration functions and we discuss the question of the existence of solutions. We also propose an alternate way of solving the optimization problem given by the calibration principle. We finally present a set of simulations in order to compare the different methods.

Suggested Citation

  • Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00681-3
    DOI: 10.1007/s11749-019-00681-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00681-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00681-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
    2. Wu C. & Sitter R. R, 2001. "A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 185-193, March.
    3. Jean-Francois Beaumont & Cynthia Bocci, 2008. "Another look at ridge calibration," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 5-20.
    4. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    5. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    6. Éric Lesage & David Haziza & Xavier D’Haultfœuille, 2019. "A Cautionary Tale on Instrumental Calibration for the Treatment of Nonignorable Unit Nonresponse in Surveys," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 906-915, April.
    7. Alessio Guandalini & Yves Tillé, 2017. "Design-based Estimators Calibrated on Estimated Totals from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 85(2), pages 250-269, August.
    8. Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
    9. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    10. Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
    11. Matei, Alina & Tille, Yves, 2007. "Computational aspects of order [pi]ps sampling schemes," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3703-3717, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2020. "A Study of Discontinuity Effects in Regression Inference based on Web-Augmented Mixed Mode Surveys," Research Papers in Economics 2020-03, University of Trier, Department of Economics.
    2. Anne Konrad & Jan Pablo Burgard & Ralf Münnich, 2021. "A Two‐level GREG Estimator for Consistent Estimation in Household Surveys," International Statistical Review, International Statistical Institute, vol. 89(3), pages 635-656, December.
    3. Alessio Guandalini & Claudio Ceccarelli, 2022. "Impact measurement and dimension reduction of auxiliary variables in calibration estimator using the Shapley decomposition," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 759-784, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Giovanna Ranalli & Alina Matei & Andrea Neri, 2023. "Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 169-195, March.
    2. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    3. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    4. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    5. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    6. Denis Devaud & Yves Tillé, 2019. "Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1087-1091, December.
    7. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    8. J. N. K. Rao, 2021. "On Making Valid Inferences by Integrating Data from Surveys and Other Sources," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 242-272, May.
    9. Dong Liang & Genevieve Nesslage & Michael Wilberg & Thomas Miller, 2017. "Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 481-497, December.
    10. Yves G. Berger, 2016. "Empirical Likelihood Inference for the Rao-Hartley-Cochran Sampling Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 721-735, September.
    11. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    12. Yves G. Berger & Ewa Kabzińska, 2020. "Empirical Likelihood Approach for Aligning Information from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 54-74, April.
    13. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
    14. Maria del Mar Rueda, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1077-1081, December.
    15. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
    16. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    17. Alessio Guandalini & Claudio Ceccarelli, 2022. "Impact measurement and dimension reduction of auxiliary variables in calibration estimator using the Shapley decomposition," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 759-784, October.
    18. Williams Matthew & Berg Emily, 2013. "Incorporating User Input Into Optimal Constraining Procedures for Survey Estimates," Journal of Official Statistics, Sciendo, vol. 29(3), pages 375-396, June.
    19. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    20. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:4:d:10.1007_s11749-019-00681-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.