IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i3p721-735.html
   My bibliography  Save this article

Empirical Likelihood Inference for the Rao-Hartley-Cochran Sampling Design

Author

Listed:
  • Yves G. Berger

Abstract

No abstract is available for this item.

Suggested Citation

  • Yves G. Berger, 2016. "Empirical Likelihood Inference for the Rao-Hartley-Cochran Sampling Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 721-735, September.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:3:p:721-735
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12200
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    2. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    2. Yves G. Berger & Ewa Kabzińska, 2020. "Empirical Likelihood Approach for Aligning Information from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 54-74, April.
    3. Oǧuz-Alper, Melike & Berger, Yves G., 2020. "Modelling multilevel data under complex sampling designs: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    4. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    5. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    6. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    7. Variyath A. M., 2013. "Empirical Likelihood Based Control Charts," Stochastics and Quality Control, De Gruyter, vol. 28(1), pages 37-44, October.
    8. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    9. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    10. Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
    11. Nicholas-James Clavet & Jean-Yves Duclos & Bernard Fortin & Steeve Marchand, 2012. "Le Québec, 2004-2030 : une analyse de micro-simulation," CIRANO Project Reports 2012rp-16, CIRANO.
    12. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    13. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    14. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    15. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    16. Dong Liang & Genevieve Nesslage & Michael Wilberg & Thomas Miller, 2017. "Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 481-497, December.
    17. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
    18. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    19. Jean-Francois Beaumont & Cynthia Bocci, 2008. "Another look at ridge calibration," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 5-20.
    20. Jing Cheng & Dylan S. Small, 2021. "Semiparametric models and inference for the effect of a treatment when the outcome is nonnegative with clumping at zero," Biometrics, The International Biometric Society, vol. 77(4), pages 1187-1201, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:3:p:721-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.