IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i5d10.1007_s00362-020-01186-0.html
   My bibliography  Save this article

Bayesian prediction of spatial data with non-ignorable missingness

Author

Listed:
  • Samira Zahmatkesh

    (Tarbiat Modares University)

  • Mohsen Mohammadzadeh

    (Tarbiat Modares University)

Abstract

In spatial data, especially in geostatistics data where measurements are often provided by satellite scanning, some parts of data may get missed. Due to spatial dependence in the data, these missing values probably are caused by some latent spatial random fields. In this case, ignoring missingness is not logical and may lead to invalid inferences. Thus incorporating the missingness process model into the inferences could improve the results. There are several approaches to take into account the non-ignorable missingness, one of them is the shared parameter model method. In this paper, we extend it for spatial data so that we will have a joint spatial Bayesian shared parameter model. Then the missingness process will be jointly modeled with the measurement process and one or more latent spatial random fields as shared parameters would describe their association. Bayesian inference is implemented by Integrated nested Laplace approximation. A computationally effective approach is applied via a stochastic partial differential equation for approximating latent Gaussian random field. In a simulation study, the proposed spatial joint model is compared with a model that assumes data are missing at random. Based on these two models, the lake surface water temperature data for lake Vänern in Sweden are analyzed. The results of estimation and prediction confirm the efficiency of the spatial joint model.

Suggested Citation

  • Samira Zahmatkesh & Mohsen Mohammadzadeh, 2021. "Bayesian prediction of spatial data with non-ignorable missingness," Statistical Papers, Springer, vol. 62(5), pages 2247-2268, October.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01186-0
    DOI: 10.1007/s00362-020-01186-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01186-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01186-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    2. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    3. Johns C.J. & Nychka D. & Kittel T.G.F. & Daly C., 2003. "Infilling Sparse Records of Spatial Fields," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 796-806, January.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    6. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    7. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    8. D. Pati & B. J. Reich & D. B. Dunson, 2011. "Bayesian geostatistical modelling with informative sampling locations," Biometrika, Biometrika Trust, vol. 98(1), pages 35-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    2. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    3. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    4. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    5. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    6. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    7. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    8. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    9. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    10. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    11. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    12. Karl Pazdernik & Ranjan Maitra & Douglas Nychka & Stephan Sain, 2018. "Reduced Basis Kriging for Big Spatial Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 280-300, August.
    13. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Bivand, Roger & Krivoruchko, Konstantin, 2018. "Big data sampling and spatial analysis: “which of the two ladles, of fig-wood or gold, is appropriate to the soup and the pot?”," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 87-91.
    15. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    16. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    17. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    18. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    19. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    20. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01186-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.