IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i4d10.1007_s00362-018-1006-0.html
   My bibliography  Save this article

On the performance of weighted bootstrapped kernel deconvolution density estimators

Author

Listed:
  • Ali Al-Sharadqah

    (California State University)

  • Majid Mojirsheibani

    (California State University)

  • William Pouliot

    (University of Birmingham)

Abstract

We propose a weighted bootstrap approach that can improve on current methods to approximate the finite sample distribution of normalized maximal deviations of kernel deconvolution density estimators in the case of ordinary smooth errors. Using results from the approximation theory for weighted bootstrap empirical processes, we establish an unconditional weak limit theorem for the corresponding weighted bootstrap statistics. Because the proposed method uses weights that are not necessarily confined to be uniform (as in Efron’s original bootstrap), it provides the practitioner with additional flexibility for choosing the weights. As an immediate consequence of our results, one can construct uniform confidence bands, or perform goodness-of-fit tests, for the underlying density. We have also carried out some numerical examples which show that, depending on the bootstrap weights chosen, the proposed method has the potential to perform better than the current procedures in the literature.

Suggested Citation

  • Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-1006-0
    DOI: 10.1007/s00362-018-1006-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-1006-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-1006-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao-Feng & Wang, Bin, 2011. "Deconvolution Estimation in Measurement Error Models: The R Package decon," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i10).
    2. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    3. R. Zamini & V. Fakoor & M. Sarmad, 2015. "On estimation of a density function in multiplicative censoring," Statistical Papers, Springer, vol. 56(3), pages 661-676, August.
    4. Burke, Murray D., 2000. "Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 13-20, January.
    5. Bert Van Es & Hae‐Won Uh, 2005. "Asymptotic Normality of Kernel‐Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483, September.
    6. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    7. Antonio F. Galvao & Gabriel Montes–Rojas & Jose Olmo & Suyong Song, 2018. "On solving endogeneity with invalid instruments: an application to investment equations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 689-716, June.
    8. Majid Mojirsheibani & William Pouliot, 2017. "Weighted bootstrapped kernel density estimators in two-sample problems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 61-84, January.
    9. Mihee Lee & Haipeng Shen & Christina Burch & J. Marron, 2010. "Direct deconvolution density estimation of a mixture distribution motivated by mutation effects distribution," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 1-22.
    10. Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef, 2000. "Approximations for weighted bootstrap processes with an application," Statistics & Probability Letters, Elsevier, vol. 48(1), pages 59-70, May.
    11. van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
    12. Konakov, V. D. & Piterbarg, V. I., 1984. "On the convergence rate of maximal deviation distribution for kernel regression estimates," Journal of Multivariate Analysis, Elsevier, vol. 15(3), pages 279-294, December.
    13. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    14. Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
    15. Niklas Ahlgren & Paul Catani, 2017. "Wild bootstrap tests for autocorrelation in vector autoregressive models," Statistical Papers, Springer, vol. 58(4), pages 1189-1216, December.
    16. Arnold Janssen, 2005. "Resampling student'st-type statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 507-529, September.
    17. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    18. Aurore Delaigle & Peter Hall, 2014. "Parametrically Assisted Nonparametric Estimation of a Density in the Deconvolution Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 717-729, June.
    19. van Es, A. J. & Kok, A. R., 1998. "Simple kernel estimators for certain nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 151-160, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojirsheibani, Majid, 2021. "A note on the performance of bootstrap kernel density estimation with small re-sample sizes," Statistics & Probability Letters, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Sharadqah & Majid Mojirsheibani, 2020. "A simple approach to construct confidence bands for a regression function with incomplete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 81-99, March.
    2. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    3. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    4. Mojirsheibani, Majid, 2012. "A weighted bootstrap approximation of the maximal deviation of kernel density estimates over general compact sets," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 230-241.
    5. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    6. Wang, Xiao-Feng & Ye, Deping, 2015. "Conditional density estimation in measurement error problems," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 38-50.
    7. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    8. Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
    9. Liu, Bo & Mojirsheibani, Majid, 2015. "On a weighted bootstrap approximation of the Lp norms of kernel density estimators," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 65-73.
    10. van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
    11. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    12. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
    13. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
    14. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    15. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    16. Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute of Labor Economics (IZA).
    17. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    18. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    19. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    20. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-1006-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.