IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v26y2017i1d10.1007_s10260-016-0359-6.html
   My bibliography  Save this article

On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification

Author

Listed:
  • Timothy Reese

    (California State University)

  • Majid Mojirsheibani

    (California State University)

Abstract

We consider kernel methods to construct nonparametric estimators of a regression function based on incomplete data. To tackle the presence of incomplete covariates, we employ Horvitz–Thompson-type inverse weighting techniques, where the weights are the selection probabilities. The unknown selection probabilities are themselves estimated using (1) kernel regression, when the functional form of these probabilities are completely unknown, and (2) the least-squares method, when the selection probabilities belong to a known class of candidate functions. To assess the overall performance of the proposed estimators, we establish exponential upper bounds on the $$L_p$$ L p norms, $$1\le p

Suggested Citation

  • Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.
  • Handle: RePEc:spr:stmapp:v:26:y:2017:i:1:d:10.1007_s10260-016-0359-6
    DOI: 10.1007/s10260-016-0359-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-016-0359-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-016-0359-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xu & Xu, Wangli & Zhu, Lixing, 2014. "Multi-index regression models with missing covariates at random," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 345-363.
    2. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    3. Majid Mojirsheibani, 2012. "Some results on classifier selection with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 521-539, May.
    4. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    7. Hua Yun Chen, 2004. "Nonparametric and Semiparametric Models for Missing Covariates in Parametric Regression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1176-1189, December.
    8. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    9. Michael Kohler & Adam Krzyżak & Harro Walk, 2003. "Strong consistency of automatic kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 287-308, June.
    10. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    11. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    12. Faes, C. & Ormerod, J. T. & Wand, M. P., 2011. "Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 959-971.
    13. Wang, Lu & Rotnitzky, Andrea & Lin, Xihong, 2010. "Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1135-1146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    2. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Han & Majid Mojirsheibani, 2021. "On histogram-based regression and classification with incomplete data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 635-662, July.
    2. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    3. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    4. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    5. Christina Felfe & Martin Huber, 2017. "Does preschool boost the development of minority children?: the case of Roma children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 475-502, February.
    6. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Oct 2022.
    7. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.
    8. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    9. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    10. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
    12. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    13. Arribas Ivan & Perez Francisco & Tortosa-Ausina Emili, 2010. "The Determinants of International Financial Integration Revisited: The Role of Networks and Geographic Neutrality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-55, December.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    16. Markus Frölich & Martin Huber, 2019. "Including Covariates in the Regression Discontinuity Design," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 736-748, October.
    17. Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
    18. Abhijit Sharma & Alastair Bailey & Iain Fraser, 2011. "Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 73-92, February.
    19. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    20. Haupt, Harry & Schnurbus, Joachim & Semmler, Willi, 2018. "Estimation of grouped, time-varying convergence in economic growth," Econometrics and Statistics, Elsevier, vol. 8(C), pages 141-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:26:y:2017:i:1:d:10.1007_s10260-016-0359-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.