IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v18y2015i1p1-31.html
   My bibliography  Save this article

Difference based estimators and infill statistics

Author

Listed:
  • José León
  • Carenne Ludeña

Abstract

Infill statistics, that is, statistical inference based on very dense observations over a fixed domain has become of late a subject of growing importance. On the other hand, it is a known phenomenon that in many cases infill statistics do not provide optimal rates. The degree of sub-optimality is related to how much parameter-related information is lost because of dense sampling, which in turn is related to sample path regularity. In the stationary Gaussian case this is determined by the large value behaviour of the spectral density and its derivatives. Moreover, many interesting non stationary examples such as non linear functionals of stationary Gaussian processes or diffusion processes driven by a stationary increment Gaussian process can also be seen to depend on the large value behaviour of the spectral density of the underlying process. In this article we discuss several examples in a unified frequency domain approach providing a general framework relating sample path regularity to estimation rates. This includes examples such as volatility estimation for diffusions and fractional diffusions, multifractals and non-linear functions of Gaussian processes. As a final example we include the problem of estimation in the presence of an additive white noise, known as the nugget effect or micro-structure error. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • José León & Carenne Ludeña, 2015. "Difference based estimators and infill statistics," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 1-31, April.
  • Handle: RePEc:spr:sistpr:v:18:y:2015:i:1:p:1-31
    DOI: 10.1007/s11203-014-9103-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-014-9103-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-014-9103-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    3. Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
    4. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    5. Zhengyuan Zhu & Murad S. Taqqu, 2006. "Impact of the Sampling Rate on the Estimation of the Parameters of Fractional Brownian Motion," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 367-380, May.
    6. Lu, Zudi & Tjøstheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3145-3151, December.
    7. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    8. Gloter, A. & Hoffmann, M., 2004. "Stochastic volatility and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(1), pages 143-172, September.
    9. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae Kim & Jeong Park & Gyu Song, 2010. "An asymptotic theory for the nugget estimator in spatial models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 181-195.
    2. Markus Bibinger & Lars Winkelmann, 2013. "Econometrics of co-jumps in high-frequency data with noise," SFB 649 Discussion Papers SFB649DP2013-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    4. Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
    5. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
    6. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    7. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    8. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    9. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    10. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    11. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    12. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.
    13. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    14. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
    15. Chang, Jinyuan & Chen, Songxi, 2011. "On the Approximate Maximum Likelihood Estimation for Diffusion Processes," MPRA Paper 46279, University Library of Munich, Germany.
    16. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    17. Gradojevic, Nikola & Erdemlioglu, Deniz & Gençay, Ramazan, 2020. "A new wavelet-based ultra-high-frequency analysis of triangular currency arbitrage," Economic Modelling, Elsevier, vol. 85(C), pages 57-73.
    18. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    19. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    20. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:18:y:2015:i:1:p:1-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.