IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v99y2014i3d10.1007_s11192-013-1209-z.html
   My bibliography  Save this article

Evolutionary events in a mathematical sciences research collaboration network

Author

Listed:
  • Jason Cory Brunson

    (Virginia Bioinformatics Institute)

  • Steve Fassino

    (University of Tennessee)

  • Antonio McInnes

    (Oakwood University)

  • Monisha Narayan

    (Michigan State University)

  • Brianna Richardson

    (Oakwood University)

  • Christopher Franck

    (Laboratory for Interdisciplinary Statistical Analysis)

  • Patrick Ion

    (Mathematical Reviews)

  • Reinhard Laubenbacher

    (University of Connecticut Health Center)

Abstract

This study examines long-term trends and shifting behavior in the collaboration network of mathematics literature, using a subset of data from Mathematical Reviews spanning 1985–2009. Rather than modeling the network cumulatively, this study traces the evolution of the “here and now” using fixed-duration sliding windows. The analysis uses a suite of common network diagnostics, including the distributions of degrees, distances, and clustering, to track network structure. Several random models that call these diagnostics as parameters help tease them apart as factors from the values of others. Some behaviors are consistent over the entire interval, but most diagnostics indicate that the network’s structural evolution is dominated by occasional dramatic shifts in otherwise steady trends. These behaviors are not distributed evenly across the network; stark differences in evolution can be observed between two major subnetworks, loosely thought of as “pure” and “applied”, which approximately partition the aggregate. The paper characterizes two major events along the mathematics network trajectory and discusses possible explanatory factors.

Suggested Citation

  • Jason Cory Brunson & Steve Fassino & Antonio McInnes & Monisha Narayan & Brianna Richardson & Christopher Franck & Patrick Ion & Reinhard Laubenbacher, 2014. "Evolutionary events in a mathematical sciences research collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 973-998, June.
  • Handle: RePEc:spr:scient:v:99:y:2014:i:3:d:10.1007_s11192-013-1209-z
    DOI: 10.1007/s11192-013-1209-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1209-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1209-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernanda Morillo & María Bordons & Isabel Gómez, 2003. "Interdisciplinarity in science: A tentative typology of disciplines and research areas," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(13), pages 1237-1249, November.
    2. George J. Borjas & Kirk B. Doran, 2021. "The Collapse Of The Soviet Union And The Productivity Of American Mathematicians," World Scientific Book Chapters, in: Foundational Essays in Immigration Economics, chapter 11, pages 313-373, World Scientific Publishing Co. Pte. Ltd..
    3. Tomassini, Marco & Luthi, Leslie, 2007. "Empirical analysis of the evolution of a scientific collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 750-764.
    4. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    5. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    6. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    7. Alan L Porter & J David Roessner & Alex S Cohen & Marty Perreault, 2006. "Interdisciplinary research: meaning, metrics and nurture," Research Evaluation, Oxford University Press, vol. 15(3), pages 187-195, December.
    8. Perc, Matjaž, 2010. "Growth and structure of Slovenia’s scientific collaboration network," Journal of Informetrics, Elsevier, vol. 4(4), pages 475-482.
    9. Jian Qin & F. W. Lancaster & Bryce Allen, 1997. "Types and levels of collaboration in interdisciplinary research in the sciences," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(10), pages 893-916, October.
    10. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    11. Peder Olesen Larsen & Markus Ins, 2010. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 575-603, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason Cory Brunson & Xiaoyan Wang & Reinhard C Laubenbacher, 2017. "Effects of research complexity and competition on the incidence and growth of coauthorship in biomedicine," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    2. Chin-Chang Tsai & Elizabeth A. Corley & Barry Bozeman, 2016. "Collaboration experiences across scientific disciplines and cohorts," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 505-529, August.
    3. Deise Deolindo Silva & Maria Cláudia Cabrini Grácio, 2021. "Dispersion measures for h-index: a study of the Brazilian researchers in the field of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1983-2011, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dellaportas, Steven & Xu, Lina & Yang, Zhiqiang, 2022. "The level of cross-disciplinarity in cross-disciplinary accounting research: analysis and suggestions for improvement," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 85(C).
    2. Shunshun Shi & Wenyu Zhang & Shuai Zhang & Jie Chen, 2018. "Does prestige dimension influence the interdisciplinary performance of scientific entities in knowledge flow? Evidence from the e-government field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1237-1264, November.
    3. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    4. Lara-Cabrera, R. & Cotta, C. & Fernández-Leiva, A.J., 2014. "An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 523-536.
    5. Zhao, Yi & Liu, Lifan & Zhang, Chengzhi, 2022. "Is coronavirus-related research becoming more interdisciplinary? A perspective of co-occurrence analysis and diversity measure of scientific articles," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Vieira, Elizabeth S. & Cerdeira, Jorge & Teixeira, Aurora A.C., 2022. "Which distance dimensions matter in international research collaboration? A cross-country analysis by scientific domain," Journal of Informetrics, Elsevier, vol. 16(2).
    7. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    8. Türker, İlker & Çavuşoğlu, Abdullah, 2016. "Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 386-392.
    9. Tracy Klarenbeek & Nelius Boshoff, 2018. "Measuring multidisciplinary health research at South African universities: a comparative analysis based on co-authorships and journal subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1461-1485, September.
    10. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    11. Wang L. & Coccia M., 2015. "Evolutionary convergence of the patterns of international research collaborations across scientific fields," MERIT Working Papers 2015-011, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    13. Zheng Xie & Zonglin Xie & Miao Li & Jianping Li & Dongyun Yi, 2017. "Modeling the coevolution between citations and coauthorship of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 483-507, July.
    14. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    15. Sheridan, Paul & Yagahara, Yuichi & Shimodaira, Hidetoshi, 2012. "Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5031-5040.
    16. Noémi Gaskó & Rodica Ioana Lung & Mihai Alexandru Suciu, 2016. "A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 613-632, August.
    17. Tsouchnika, Maria & Smolyak, Alex & Argyrakis, Panos & Havlin, Shlomo, 2022. "Patent collaborations: From segregation to globalization," Journal of Informetrics, Elsevier, vol. 16(1).
    18. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    19. Susan Biancani & Daniel McFarland, 2013. "Social Networks Research in Higher Education," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 4, pages 85-126.
    20. Chen, Shiji & Arsenault, Clément & Larivière, Vincent, 2015. "Are top-cited papers more interdisciplinary?," Journal of Informetrics, Elsevier, vol. 9(4), pages 1034-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:99:y:2014:i:3:d:10.1007_s11192-013-1209-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.