IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v99y2014i1d10.1007_s11192-013-1090-9.html
   My bibliography  Save this article

Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping

Author

Listed:
  • Yi Zhang

    (Beijing Institute of Technology)

  • Xiao Zhou

    (Beijing Institute of Technology)

  • Alan L. Porter

    (Georgia Institute of Technology
    Search Technology, Inc.)

  • Jose M. Vicente Gomila

    (Universitat Politecnica de Valencia)

  • An Yan

    (Beijing Institute of Technology)

Abstract

In recent years, the Triple Helix model has identified feasible approaches to measuring relations among universities, industries, and governments. Results have been extended to different databases, regions, and perspectives. This paper explores how bibliometrics and text mining can inform Triple Helix analyses. It engages Competitive Technical Intelligence concepts and methods for studies of Newly Emerging Science & Technology (NEST) in support of technology management and policy. A semantic TRIZ approach is used to assess NEST innovation patterns by associating topics (using noun phrases to address subjects and objects) and actions (via verbs). We then classify these innovation patterns by the dominant categories of origination: Academy, Industry, or Government. We then use TRIZ tags and benchmarks to locate NEST progress using Technology Roadmapping. Triple Helix inferences can then be related to the visualized patterns. We demonstrate these analyses via a case study for dye-sensitized solar cells.

Suggested Citation

  • Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila & An Yan, 2014. "Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 55-75, April.
  • Handle: RePEc:spr:scient:v:99:y:2014:i:1:d:10.1007_s11192-013-1090-9
    DOI: 10.1007/s11192-013-1090-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1090-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1090-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff, 2003. "The mutual information of university-industry-government relations: An indicator of the Triple Helix dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 445-467, October.
    2. Giuliani, Elisa & Arza, Valeria, 2009. "What drives the formation of 'valuable' university-industry linkages?: Insights from the wine industry," Research Policy, Elsevier, vol. 38(6), pages 906-921, July.
    3. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    4. Minjeong Kim & Han Woo Park, 2012. "Measuring Twitter-based political participation and deliberation in the South Korean context by using social network and Triple Helix indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 121-140, January.
    5. Kim, Younghwan & Kim, Wonjoon & Yang, Taeyong, 2012. "The effect of the triple helix system and habitat on regional entrepreneurship: Empirical evidence from the U.S," Research Policy, Elsevier, vol. 41(1), pages 154-166.
    6. Murat Bengisu, 2003. "Critical and emerging technologies in Materials, Manufacturing, and Industrial Engineering: A study for priority setting," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 473-487, November.
    7. Boardman, P. Craig, 2009. "Government centrality to university-industry interactions: University research centers and the industry involvement of academic researchers," Research Policy, Elsevier, vol. 38(10), pages 1505-1516, December.
    8. Han Woo Park & Heung Deug Hong & Loet Leydesdorff, 2005. "A comparison of the knowledge-based innovation systems in the economies of South Korea and the Netherlands using Triple Helix indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(1), pages 3-27, October.
    9. Hans Fogelberg & Stefan Thorpenberg, 2012. "Regional innovation policy and public--private partnership: The case of Triple Helix Arenas in Western Sweden," Science and Public Policy, Oxford University Press, vol. 39(3), pages 347-356, April.
    10. Gohar Feroz Khan & Seong Eun Cho & Han Woo Park, 2012. "A comparison of the Daegu and Edinburgh musical industries: a triple helix approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 85-99, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    2. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    3. Arenal, Alberto & Armuña, Cristina & Feijoo, Claudio & Ramos, Sergio & Xu, Zimu & Moreno, Ana, 2020. "Innovation ecosystems theory revisited: The case of artificial intelligence in China," Telecommunications Policy, Elsevier, vol. 44(6).
    4. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    5. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    6. Sabrina L. Woltmann & Lars Alkærsig, 2018. "Tracing university–industry knowledge transfer through a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 449-472, October.
    7. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    8. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    9. Hong Wu & Huifang Yi & Chang Li, 2021. "An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6301-6321, August.
    10. Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    12. Tao Zhuang & Shuliang Zhao & Mingliang Zheng & Jianxun Chu, 2021. "Triple helix relationship research on China's regional university–industry–government collaborative innovation: Based on provincial patent data," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1361-1386, September.
    13. Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
    14. Leonid Gokhberg & Dirk Meissner & Ilya Kuzminov, 2023. "What semantic analysis can tell us about long term trends in the global STI policy agenda," The Journal of Technology Transfer, Springer, vol. 48(6), pages 2249-2277, December.
    15. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Woo Park, 2014. "Mapping election campaigns through negative entropy: Triple and Quadruple Helix approach to South Korea’s 2012 presidential election," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 187-197, April.
    2. Ssu-Han Chen & Mu-Hsuan Huang & Dar-Zen Chen, 2013. "Driving factors of external funding and funding effects on academic innovation performance in university–industry–government linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1077-1098, March.
    3. Weimin Kang & Shuliang Zhao & Wei Song & Tao Zhuang, 2019. "Triple helix in the science and technology innovation centers of China from the perspective of mutual information: a comparative study between Beijing and Shanghai," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 921-940, March.
    4. Tao Zhuang & Shuliang Zhao & Mingliang Zheng & Jianxun Chu, 2021. "Triple helix relationship research on China's regional university–industry–government collaborative innovation: Based on provincial patent data," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1361-1386, September.
    5. Li, Yin & Arora, Sanjay & Youtie, Jan & Shapira, Philip, 2018. "Using web mining to explore Triple Helix influences on growth in small and mid-size firms," Technovation, Elsevier, vol. 76, pages 3-14.
    6. Yi Zhang & Kaihua Chen & Guilong Zhu & Richard C. M. Yam & Jiancheng Guan, 2016. "Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1383-1415, September.
    7. Loet Leydesdorff & Han Woo Park & Balazs Lengyel, 2014. "A routine for measuring synergy in university–industry–government relations: mutual information as a Triple-Helix and Quadruple-Helix indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 27-35, April.
    8. Noriko Yoda & Kenichi Kuwashima, 2020. "Triple Helix of University–Industry–Government Relations in Japan: Transitions of Collaborations and Interactions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1120-1144, September.
    9. Chung Joo Chung, 2014. "An analysis of the status of the Triple Helix and university–industry–government relationships in Asia," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 139-149, April.
    10. Md. Dulal Hossain & Junghoon Moon & Hyoung Goo Kang & Sung Chul Lee & Young Chan Choe, 2012. "Mapping the dynamics of knowledge base of innovations of R&D in Bangladesh: triple helix perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 57-83, January.
    11. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    12. Pieter Stek & Marina Geenhuizen, 2015. "Measuring the dynamics of an innovation system using patent data: a case study of South Korea, 2001–2010," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1325-1343, July.
    13. Hernández-Trasobares, Alejandro & Murillo-Luna, Josefina L., 2020. "The effect of triple helix cooperation on business innovation: The case of Spain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    14. Bobby Swar & Gohar Feroz Khan, 2014. "Mapping ICT knowledge infrastructure in South Asia," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 117-137, April.
    15. Porto-Gomez, Igone & Zabala-Iturriagagoitia, Jon Mikel & Leydesdorff, Loet, 2019. "Innovation systems in México: A matter of missing synergies," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    16. Zhang, Yi & Chen, Kaihua & Fu, Xiaolan, 2019. "Scientific effects of Triple Helix interactions among research institutes, industries and universities," Technovation, Elsevier, vol. 86, pages 33-47.
    17. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    18. Eustache Mêgnigbêto, 2018. "Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1168-1183, December.
    19. Hyeonchae Yang & Woo-Sung Jung, 2015. "A strategic management approach for Korean public research institutes based on bibliometric investigation," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1437-1464, July.
    20. Gohar Feroz Khan & Han Woo Park, 2012. "Editorial: Triple Helix and innovation in Asia using scientometrics, webometrics, and informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 1-7, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:99:y:2014:i:1:d:10.1007_s11192-013-1090-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.