IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03456-y.html
   My bibliography  Save this article

Facts to consider when analyzing the references of Nobel Prize scientific background

Author

Listed:
  • Houcemeddine Turki

    (University of Sfax)

  • Mohamed Ali Hadj Taieb

    (University of Sfax)

  • Mohamed Ben Aouicha

    (University of Sfax)

Abstract

Although the overall analysis of the citations received by Nobel laureates in the scientific background of their Nobel Prize gives an overview of how and when Nobel-awarded discoveries have been achieved and published, it will be interesting to consider the number of mentions of each work co-authored by a Nobel winner in his Nobel Prize scientific background, the works co-authored by Nobel laureates and listed in Further Reading section of Nobel Prize scientific background, the author rank of Nobel laureates in papers cited in Nobel Prize scientific background and the citation and co-citation networks of the research works of Nobel winners to give in-depth explanations of the dynamics of Nobel Prize discoveries.

Suggested Citation

  • Houcemeddine Turki & Mohamed Ali Hadj Taieb & Mohamed Ben Aouicha, 2020. "Facts to consider when analyzing the references of Nobel Prize scientific background," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 787-790, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03456-y
    DOI: 10.1007/s11192-020-03456-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03456-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03456-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Wan & Fang Liu, 2014. "WL-index: Leveraging citation mention number to quantify an individual's scientific impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2509-2517, December.
    2. Aida Pooladian & Ángel Borrego, 2017. "Methodological issues in measuring citations in Wikipedia: a case study in Library and Information Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 455-464, October.
    3. D. B. Arkhipov, 1999. "Scientometric analysis of nature, the journal," Scientometrics, Springer;Akadémiai Kiadó, vol. 46(1), pages 51-72, September.
    4. Hu, Zhigang & Lin, Gege & Sun, Taian & Hou, Haiyan, 2017. "Understanding multiply mentioned references," Journal of Informetrics, Elsevier, vol. 11(4), pages 948-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    2. Xing, Yanmeng & Wang, Fenghua & Zeng, An & Ying, Fan, 2021. "Solving the cold-start problem in scientific credit allocation," Journal of Informetrics, Elsevier, vol. 15(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    2. Weibin Wang & Zheng Wang & Tian Yu & CholMyong Pak & Guang Yu, 2020. "Research on citation mention times and contributions using a neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2383-2400, December.
    3. Pak, Chol Myong & Wang, Weibin & Yu, Guang, 2020. "An analysis of in-text citations based on fractional counting," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Liyue Chen & Jielan Ding & Vincent Larivière, 2022. "Measuring the citation context of national self‐references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(5), pages 671-686, May.
    5. CholMyong Pak & Guang Yu & Weibin Wang, 2018. "A study on the citation situation within the citing paper: citation distribution of references according to mention frequency," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 905-918, March.
    6. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    7. Houcemeddine Turki & Mohamed Ali Hadj Taieb & Mohamed Ben Aouicha & Ajith Abraham, 2020. "Nature or Science: what Google Trends says," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1367-1385, August.
    8. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    10. Marion Schmidt & Wolfgang Kircheis & Arno Simons & Martin Potthast & Benno Stein, 2023. "A diachronic perspective on citation latency in Wikipedia articles on CRISPR/Cas-9: an exploratory case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3649-3673, June.
    11. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    12. Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.
    13. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    14. Ming-Huang Wang & Te-Chen Yu & Yuh-Shan Ho, 2010. "A bibliometric analysis of the performance of Water Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 813-820, September.
    15. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    16. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    17. Zhou Chunlei & Kong Xiangyi & Lin Zhipeng, 2019. "Research on Derek John de Solla Price Medal Prediction Based on Academic Credit Analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 159-175, January.
    18. Zhang, Chengzhi & Liu, Lifan & Wang, Yuzhuo, 2021. "Characterizing references from different disciplines: A perspective of citation content analysis," Journal of Informetrics, Elsevier, vol. 15(2).
    19. Mingyang Wang & Jiaqi Zhang & Guangsheng Chen & Kah-Hin Chai, 2019. "Examining the influence of open access on journals’ citation obsolescence by modeling the actual citation process," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1621-1641, June.
    20. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03456-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.