IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i1d10.1007_s11192-019-03009-y.html
   My bibliography  Save this article

Evaluation of h-index and its citation intensity based variants in the field of mathematics

Author

Listed:
  • Qurat-ul Ain

    (Capital University of Science and Technology)

  • Hira Riaz

    (Capital University of Science and Technology)

  • Muhammad Tanvir Afzal

    (Capital University of Science and Technology)

Abstract

Assessing and evaluating the academic impact and its results produced by researchers is necessary to promote the academic progress. A diverse and varied set of parameters have been proposed by the scientific community to find the most influential researchers, including citation count, the total number of publications, hybrid approaches, h-index, extensions and variants of h-index. Current state-of-the-art depicts that there is no standard benchmark available to determine the optimum parameter to find the most influential author of a specific domain. Furthermore, it has been observed that such indices are assessed on a small dataset and ingenious scenarios. The small dataset can never truly help to analyze the nature of these indices and it is very difficult to determine the significance and influence of every index over the others. Hence, it’s necessary to assess them on a large dataset. The following research would help in scrutinizing the h-index along with its citation intensity based variants to rank the authors by using a large dataset of Mathematics domain that consist of 57,533 authors and 62,033 total numbers of publications. These indices make use of the total published papers, citation count, along with the h-index and the five of its citation intensity based variants. The esteemed awards that are won nationally and internationally in the field of mathematics serve as a benchmark. This study would deal and help to recognize the most influential authors by concluding the results gained after evaluation of these indices. For this purpose, firstly, we calculated the correlation among different indices. The strong correlation was found between the h-index and its five citation intensity based variants. The occurrence of the award winners is examined according to the rank lists. H-index brought around 30.88% awardees in the top 10% of the ranked list. In a bird’s eye view, no index could succeed in elevating a 50% of award winners in the top-ranking. Our benchmark dataset is composed of 68 awardees. In the ranking lists, the maximum number of awardees belongs to American Mathematics Society (AMS) which are 29.

Suggested Citation

  • Qurat-ul Ain & Hira Riaz & Muhammad Tanvir Afzal, 2019. "Evaluation of h-index and its citation intensity based variants in the field of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 187-211, April.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03009-y
    DOI: 10.1007/s11192-019-03009-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03009-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03009-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutz Bornmann & Rüdiger Mutz & Hans‐Dieter Daniel, 2008. "Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(5), pages 830-837, March.
    2. John Panaretos & Chrisovaladis Malesios, 2009. "Assessing scientific research performance and impact with single indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 635-670, December.
    3. Anne-Wil Harzing, 2013. "A preliminary test of Google Scholar as a source for citation data: a longitudinal study of Nobel prize winners," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1057-1075, March.
    4. Muhammad Raheel & Samreen Ayaz & Muhammad Tanvir Afzal, 2018. "Evaluation of h-index, its variants and extensions based on publication age & citation intensity in civil engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1107-1127, March.
    5. Naomi Fukuzawa, 2014. "An empirical analysis of the relationship between individual characteristics and research productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 785-809, June.
    6. Xiaorui Jiang & Xiaoping Sun & Hai Zhuge, 2013. "Graph-based algorithms for ranking researchers: not all swans are white!," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 743-759, September.
    7. Dorta-González, P. & Dorta-González, M.I., 2013. "Impact maturity times and citation time windows: The 2-year maximum journal impact factor," Journal of Informetrics, Elsevier, vol. 7(3), pages 593-602.
    8. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    9. Lawrence Smolinsky & Aaron Lercher, 2012. "Citation rates in mathematics: a study of variation by subdiscipline," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 911-924, June.
    10. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
    11. Quentin L. Burrell, 2007. "Hirsch index or Hirsch rate? Some thoughts arising from Liang’s data," Scientometrics, Springer;Akadémiai Kiadó, vol. 73(1), pages 19-28, October.
    12. Lutz Bornmann & Rüdiger Mutz & Hans-Dieter Daniel & Gerlind Wallon & Anna Ledin, 2009. "Are there really two types of h index variants? A validation study by using molecular life sciences data," Research Evaluation, Oxford University Press, vol. 18(3), pages 185-190, September.
    13. S. Alonso & F. J. Cabrerizo & E. Herrera-Viedma & F. Herrera, 2010. "hg-index: a new index to characterize the scientific output of researchers based on the h- and g-indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 391-400, February.
    14. Lutz Bornmann & Hans-Dieter Daniel, 2005. "Committee peer review at an international research foundation: predictive validity and fairness of selection decisions on post-graduate fellowship applications," Research Evaluation, Oxford University Press, vol. 14(1), pages 15-20, April.
    15. Yuxian Liu & I. K. Ravichandra Rao & Ronald Rousseau, 2009. "Empirical series of journal h-indices: The JCR category Horticulture as a case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 59-74, July.
    16. Michael Schreiber, 2008. "An empirical investigation of the g‐index for 26 physicists in comparison with the h‐index, the A‐index, and the R‐index," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(9), pages 1513-1522, July.
    17. Qiang Wu, 2010. "The w‐index: A measure to assess scientific impact by focusing on widely cited papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(3), pages 609-614, March.
    18. Bornmann, Lutz & Mutz, Rüdiger & Hug, Sven E. & Daniel, Hans-Dieter, 2011. "A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants," Journal of Informetrics, Elsevier, vol. 5(3), pages 346-359.
    19. Heinrich Behrens & Peter Luksch, 2011. "Mathematics 1868–2008: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 179-194, January.
    20. Antonis Sidiropoulos & Dimitrios Katsaros & Yannis Manolopoulos, 2007. "Generalized Hirsch h-index for disclosing latent facts in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 253-280, August.
    21. J Mingers, 2009. "Measuring the research contribution of management academics using the Hirsch-index," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1143-1153, September.
    22. Rizwan Ghani & Faiza Qayyum & Muhammad Tanvir Afzal & Hermann Maurer, 2019. "Comprehensive evaluation of h-index and its extensions in the domain of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 809-822, March.
    23. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    24. Samreen Ayaz & Muhammad Tanvir Afzal, 2016. "Identification of conversion factor for completing-h index for the field of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1511-1524, December.
    25. Aurora A. C. Teixeira & Luisa Mota, 2012. "A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 719-743, December.
    26. Keshra Sangwal, 2012. "On the age-independent publication index," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 1053-1058, June.
    27. Qiang Wu, 2010. "The w-index: A measure to assess scientific impact by focusing on widely cited papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(3), pages 609-614, March.
    28. Lutz Bornmann & Hans-Dieter Daniel, 2005. "Selection of research fellowship recipients by committee peer review. Reliability, fairness and predictive validity of Board of Trustees' decisions," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(2), pages 297-320, April.
    29. Alonso, S. & Cabrerizo, F.J. & Herrera-Viedma, E. & Herrera, F., 2009. "h-Index: A review focused in its variants, computation and standardization for different scientific fields," Journal of Informetrics, Elsevier, vol. 3(4), pages 273-289.
    30. Cabrerizo, F.J. & Alonso, S. & Herrera-Viedma, E. & Herrera, F., 2010. "q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core," Journal of Informetrics, Elsevier, vol. 4(1), pages 23-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    2. Marek Gagolewski & Barbara Żogała-Siudem & Grzegorz Siudem & Anna Cena, 2022. "Ockham’s index of citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2829-2845, May.
    3. Madiha Ameer & Muhammad Tanvir Afzal, 2019. "Evaluation of h-index and its qualitative and quantitative variants in Neuroscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 653-673, November.
    4. Muhammad Salman & Mohammad Masroor Ahmed & Muhammad Tanvir Afzal, 2021. "Assessment of author ranking indices based on multi-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4153-4172, May.
    5. Daniella B Deutz & Evgenios Vlachos & Dorte Drongstrup & Bertil F Dorch & Charlotte Wien, 2020. "Effective publication strategies in clinical research," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    6. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    7. Deise Deolindo Silva & Maria Cláudia Cabrini Grácio, 2021. "Dispersion measures for h-index: a study of the Brazilian researchers in the field of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1983-2011, March.
    8. Abdulrahman A. Alshdadi & Muhammad Usman & Madini O. Alassafi & Muhammad Tanvir Afzal & Rayed AlGhamdi, 2023. "Formulation of rules for the scientific community using deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1825-1852, March.
    9. Muhammad Usman & Ghulam Mustafa & Muhammad Tanvir Afzal, 2021. "Ranking of author assessment parameters using Logistic Regression," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 335-353, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madiha Ameer & Muhammad Tanvir Afzal, 2019. "Evaluation of h-index and its qualitative and quantitative variants in Neuroscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 653-673, November.
    2. Bornmann, Lutz & Mutz, Rüdiger & Hug, Sven E. & Daniel, Hans-Dieter, 2011. "A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants," Journal of Informetrics, Elsevier, vol. 5(3), pages 346-359.
    3. Muhammad Raheel & Samreen Ayaz & Muhammad Tanvir Afzal, 2018. "Evaluation of h-index, its variants and extensions based on publication age & citation intensity in civil engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1107-1127, March.
    4. Rizwan Ghani & Faiza Qayyum & Muhammad Tanvir Afzal & Hermann Maurer, 2019. "Comprehensive evaluation of h-index and its extensions in the domain of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 809-822, March.
    5. Muhammad Usman & Ghulam Mustafa & Muhammad Tanvir Afzal, 2021. "Ranking of author assessment parameters using Logistic Regression," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 335-353, January.
    6. Brandão, Luana Carneiro & Soares de Mello, João Carlos Correia Baptista, 2019. "A multi-criteria approach to the h-index," European Journal of Operational Research, Elsevier, vol. 276(1), pages 357-363.
    7. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    8. Zhenbin Yan & Qiang Wu & Xingchen Li, 2016. "Do Hirsch-type indices behave the same in assessing single publications? An empirical study of 29 bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1815-1833, December.
    9. Vîiu, Gabriel-Alexandru, 2016. "A theoretical evaluation of Hirsch-type bibliometric indicators confronted with extreme self-citation," Journal of Informetrics, Elsevier, vol. 10(2), pages 552-566.
    10. Sidiropoulos, A. & Gogoglou, A. & Katsaros, D. & Manolopoulos, Y., 2016. "Gazing at the skyline for star scientists," Journal of Informetrics, Elsevier, vol. 10(3), pages 789-813.
    11. Abdulrahman A. Alshdadi & Muhammad Usman & Madini O. Alassafi & Muhammad Tanvir Afzal & Rayed AlGhamdi, 2023. "Formulation of rules for the scientific community using deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1825-1852, March.
    12. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    13. Ana Paula dos Santos Rubem & Ariane Lima Moura & João Carlos Correia Baptista Soares de Mello, 2015. "Comparative analysis of some individual bibliometric indices when applied to groups of researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 1019-1035, January.
    14. Muhammad Salman & Mohammad Masroor Ahmed & Muhammad Tanvir Afzal, 2021. "Assessment of author ranking indices based on multi-authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4153-4172, May.
    15. Yu Liu & Wei Zuo & Ying Gao & Yanhong Qiao, 2013. "Comprehensive geometrical interpretation of h-type indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 605-615, August.
    16. Samreen Ayaz & Muhammad Tanvir Afzal, 2016. "Identification of conversion factor for completing-h index for the field of mathematics," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1511-1524, December.
    17. Lorna Wildgaard & Jesper W. Schneider & Birger Larsen, 2014. "A review of the characteristics of 108 author-level bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 125-158, October.
    18. Marek Gagolewski & Barbara Żogała-Siudem & Grzegorz Siudem & Anna Cena, 2022. "Ockham’s index of citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2829-2845, May.
    19. Jingda Ding & Chao Liu & Goodluck Asobenie Kandonga, 2020. "Exploring the limitations of the h-index and h-type indexes in measuring the research performance of authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1303-1322, March.
    20. Cabrerizo, F.J. & Alonso, S. & Herrera-Viedma, E. & Herrera, F., 2010. "q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core," Journal of Informetrics, Elsevier, vol. 4(1), pages 23-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03009-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.