IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v83y2021i1d10.1007_s13171-019-00173-4.html
   My bibliography  Save this article

Some Properties of the Multivariate Generalized Hyperbolic Laws

Author

Listed:
  • Stergios B. Fotopoulos

    (Washington State University)

  • Venkata K. Jandhyala

    (Washington State University)

  • Alex Paparas

    (Washington State University)

Abstract

The purpose of this study is to characterize multivariate generalized hyperbolic (MGH) distributions and their conditionals by considering the MGH as a subclass of the mean-variance mixing of the multivariate normal law. The essential contribution here lies in expressing MGH densities by utilizing various integral representations of the Bessel function. Moreover, in a more convenient form these modified density representations are more advantageous for deriving limiting results. The forms are also convenient for studying the transient as well as tail behavior of MGH distributions. The results include the normal distribution as a limiting form for the MGH distribution. To support the MGH model an empirical study is conducted to demonstrate the applicability of the MGH distribution for modeling not only high frequency data but also for modeling low frequency data. This is against the currently prevailing notion that the MGH model is relevant for modeling only high frequency data.

Suggested Citation

  • Stergios B. Fotopoulos & Venkata K. Jandhyala & Alex Paparas, 2021. "Some Properties of the Multivariate Generalized Hyperbolic Laws," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 187-205, February.
  • Handle: RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00173-4
    DOI: 10.1007/s13171-019-00173-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-019-00173-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-019-00173-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael McAssey, 2013. "An empirical goodness-of-fit test for multivariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(5), pages 1120-1131.
    2. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    3. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    4. Richardson, Matthew & Smith, Tom, 1993. "A Test for Multivariate Normality in Stock Returns," The Journal of Business, University of Chicago Press, vol. 66(2), pages 295-321, April.
    5. Fotopoulos, Stergios B., 2017. "Symmetric Gaussian mixture distributions with GGC scales," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 185-194.
    6. Fotopoulos, Stergios & Jandhyala, Venkata & Wang, Jun, 2015. "On the joint distribution of the supremum functional and its last occurrence for subordinated linear Brownian motion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 149-156.
    7. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    8. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    9. Olbricht, W., 1991. "On mergers of distributions and distributions with exponential tails," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 315-326, November.
    10. Affleck-Graves, John & McDonald, Bill, 1989. " Nonnormalities and Tests of Asset Pricing Theories," Journal of Finance, American Finance Association, vol. 44(4), pages 889-908, September.
    11. Yu, Yaming, 2017. "On normal variance–mean mixtures," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 45-50.
    12. Patrizia Semeraro, 2008. "A Multivariate Variance Gamma Model For Financial Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stergios B. Fotopoulos & Alex Paparas & Venkata K. Jandhyala, 2020. "Multivariate generalized hyperbolic laws for modeling financial log‐returns: Empirical and theoretical considerations," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(5), pages 757-775, September.
    2. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    3. Marina Marena & Andrea Romeo & Patrizia Semeraro, 2015. "Pricing multivariate barrier reverse convertibles with factor-based subordinators," Carlo Alberto Notebooks 439, Collegio Carlo Alberto.
    4. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    5. Petar Jevtić & Marina Marena & Patrizia Semeraro, 2019. "Multivariate Marked Poisson Processes And Market Related Multidimensional Information Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-26, March.
    6. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
    7. Elisa Luciano & Marina Marena & Patrizia Semeraro, 2013. "Dependence Calibration and Portfolio Fit with FactorBased Time Changes," Carlo Alberto Notebooks 307, Collegio Carlo Alberto, revised 2015.
    8. Florence Guillaume, 2018. "Multivariate Option Pricing Models With Lévy And Sato Vg Marginal Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-26, March.
    9. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    10. Petar Jevtic & Patrizia Semeraro, 2014. "A class of multivariate marked Poisson processes to model asset returns," Carlo Alberto Notebooks 351, Collegio Carlo Alberto.
    11. Marina Marena & Andrea Romeo & Patrizia Semeraro, 2018. "Multivariate Factor-Based Processes With Sato Margins," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-30, February.
    12. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(1), pages 3-46.
    13. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    14. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    15. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
    16. Jean-Marie Dufour & Lynda Khalaf & Marie-Claude Beaulieu, 2010. "Multivariate residual-based finite-sample tests for serial dependence and ARCH effects with applications to asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 263-285.
    17. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    18. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    19. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:83:y:2021:i:1:d:10.1007_s13171-019-00173-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.