IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v80y2018i1d10.1007_s13171-017-0101-y.html
   My bibliography  Save this article

A Note on Inverse Stereographic Projection of Elliptical Distributions

Author

Listed:
  • Jean-Luc Dortet-Bernadet

    (Université de Strasbourg)

  • Nicolas Wicker

    (Université de Lille 1)

Abstract

This note concerns a family of distributions on the unit sphere obtained by inverse stereographic projection of elliptical distributions. We give some properties of these distributions with emphasis on the study of unimodality. This construction encompasses many known families of distributions on the unit sphere. Finally we show that it is possible to define new families of unimodal distributions that allow anisotropy.

Suggested Citation

  • Jean-Luc Dortet-Bernadet & Nicolas Wicker, 2018. "A Note on Inverse Stereographic Projection of Elliptical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 138-151, February.
  • Handle: RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-017-0101-y
    DOI: 10.1007/s13171-017-0101-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-017-0101-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-017-0101-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kume & Andrew T. A. Wood, 2005. "Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants," Biometrika, Biometrika Trust, vol. 92(2), pages 465-476, June.
    2. Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    2. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    3. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    4. Ian L. Dryden, 2014. "Comment on Geodesic Monte Carlo on Embedded Manifolds by Byrne and Girolami," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 8-9, March.
    5. Toshihiro Abe & Hiroaki Ogata & Takayuki Shiohama & Hiroyuki Taniai, 2017. "Circular autocorrelation of stationary circular Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 275-290, October.
    6. Toshihiro Abe & Christophe Ley, 2015. "A Tractable, Parsimonious and Highly Flexible Model for Cylindrical Data, with Applications," Working Papers ECARES ECARES 2015-20, ULB -- Universite Libre de Bruxelles.
    7. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    8. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    9. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    10. Arnab Kumar Laha & A. C. Pravida Raja & K. C. Mahesh, 2019. "SB-robust estimation of mean direction for some new circular distributions," Statistical Papers, Springer, vol. 60(3), pages 877-902, June.
    11. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    12. Ley, Christophe & Verdebout, Thomas, 2017. "Skew-rotationally-symmetric distributions and related efficient inferential procedures," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 67-81.
    13. Abe, Toshihiro & Pewsey, Arthur & Shimizu, Kunio, 2009. "On Papakonstantinou's extension of the cardioid distribution," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2138-2147, October.
    14. Andrew Harvey & Dario Palumbo, 2023. "Regime switching models for circular and linear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 374-392, July.
    15. Kume, A. & Walker, S.G., 2014. "On the Bingham distribution with large dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 345-352.
    16. Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
    17. Garnett P. McMillan & Timothy E. Hanson & Gabrielle Saunders & Frederick J. Gallun, 2013. "A two-component circular regression model for repeated measures auditory localization data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 515-534, August.
    18. Tamio Koyama & Akimichi Takemura, 2016. "Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables," Computational Statistics, Springer, vol. 31(4), pages 1645-1659, December.
    19. Kume, A. & Wood, Andrew T.A., 2007. "On the derivatives of the normalising constant of the Bingham distribution," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 832-837, April.
    20. Abe, Toshihiro & Pewsey, Arthur, 2011. "Symmetric circular models through duplication and cosine perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3271-3282, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-017-0101-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.