IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v90y2018i3d10.1007_s11134-018-9585-y.html
   My bibliography  Save this article

Optimizing buffer size for the retrial queue: two state space collapse results in heavy traffic

Author

Listed:
  • Rami Atar

    (Technion–Israel Institute of Technology)

  • Anat Lev-Ari

    (Technion–Israel Institute of Technology)

Abstract

We study a single server queueing model with admission control and retrials. In the heavy traffic limit, the main queue and retrial queue lengths jointly converge to a degenerate two-dimensional diffusion process. When this model is considered with holding and rejection costs, formal limits lead to a free boundary curve that determines a threshold on the main queue length as a function of the retrial queue length, above which arrivals must be rejected. However, it is known to be a notoriously difficult problem to characterize this curve. We aim instead at optimizing the threshold on the main queue length independently of the retrial queue length. Our main result shows that in the small and large retrial rate limits, this problem is governed by the Harrison–Taksar free boundary problem, which is a Bellman equation in which the free boundary consists of a single point. We derive the asymptotically optimal buffer size in these two extreme cases, as the scaling parameter and the retrial rate approach their limits.

Suggested Citation

  • Rami Atar & Anat Lev-Ari, 2018. "Optimizing buffer size for the retrial queue: two state space collapse results in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 225-255, December.
  • Handle: RePEc:spr:queues:v:90:y:2018:i:3:d:10.1007_s11134-018-9585-y
    DOI: 10.1007/s11134-018-9585-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-018-9585-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-018-9585-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Michael Harrison & Michael I. Taksar, 1983. "Instantaneous Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 439-453, August.
    2. Vyacheslav Abramov, 2006. "Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution," Annals of Operations Research, Springer, vol. 141(1), pages 19-50, January.
    3. Vladimir Anisimov, 1999. "Switching stochastic models and applications in retrial queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 169-186, December.
    4. J. Artalejo, 1999. "A classified bibliography of research on retrial queues: Progress in 1990–1999," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 187-211, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Anisimov & Jesus Artalejo, 2002. "Approximation of multiserver retrial queues by means of generalized truncated models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 51-66, June.
    2. Fernando Alvarez & Francesco Lippi & Roberto Robatto, 2019. "Cost of Inflation in Inventory Theoretical Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 206-226, April.
    3. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    4. Sanga, Sudeep Singh & Jain, Madhu, 2019. "Cost optimization and ANFIS computing for admission control of M/M/1/K queue with general retrial times and discouragement," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    5. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    6. Miao, Jianjun & Zhang, Yuzhe, 2015. "A duality approach to continuous-time contracting problems with limited commitment," Journal of Economic Theory, Elsevier, vol. 159(PB), pages 929-988.
    7. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    8. Se Won Lee & Bara Kim & Jeongsim Kim, 2022. "Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication," Annals of Operations Research, Springer, vol. 310(2), pages 505-518, March.
    9. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    10. H. Dharma Kwon & Hongzhong Zhang, 2015. "Game of Singular Stochastic Control and Strategic Exit," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 869-887, October.
    11. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    12. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    13. Zhen Xu & Jiheng Zhang & Rachel Q. Zhang, 2019. "Instantaneous Control of Brownian Motion with a Positive Lead Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 943-965, August.
    14. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.
    15. Milind M. Shrikhande, 1997. "The cost of doing business abroad and international capital market equilibrium," FRB Atlanta Working Paper 97-3, Federal Reserve Bank of Atlanta.
    16. Lamia Lakaour & Djamil Aïssani & Karima Adel-Aissanou & Kamel Barkaoui, 2019. "M/M/1 Retrial Queue with Collisions and Transmission Errors," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1395-1406, December.
    17. Baurdoux, Erik J. & Yamazaki, Kazutoshi, 2015. "Optimality of doubly reflected Lévy processes in singular control," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2727-2751.
    18. Yao, Jing-Shing & Chen, Miao-Sheng & Lu, Huei-Fu, 2006. "A fuzzy stochastic single-period model for cash management," European Journal of Operational Research, Elsevier, vol. 170(1), pages 72-90, April.
    19. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2009. "Spectral decomposition of optimal asset-liability management," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 710-724, March.
    20. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:90:y:2018:i:3:d:10.1007_s11134-018-9585-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.