IDEAS home Printed from https://ideas.repec.org/a/spr/pharmo/v8y2024i3d10.1007_s41669-024-00481-y.html
   My bibliography  Save this article

A Canadian Simulation Model for Major Depressive Disorder: Study Protocol

Author

Listed:
  • Shahzad Ghanbarian

    (University of British Columbia
    Vancouver Coastal Health Research Institute)

  • Gavin W. K. Wong

    (University of British Columbia
    Vancouver Coastal Health Research Institute)

  • Mary Bunka

    (University of British Columbia
    Vancouver Coastal Health Research Institute)

  • Louisa Edwards

    (University of British Columbia
    Vancouver Coastal Health Research Institute)

  • Sonya Cressman

    (University of British Columbia
    Simon Fraser University)

  • Tania Conte

    (University of British Columbia)

  • Sandra Peterson

    (University of British Columbia)

  • Rohit Vijh

    (University of British Columbia
    University of British Columbia)

  • Morgan Price

    (University of British Columbia)

  • Christian Schuetz

    (University of British Columbia)

  • David Erickson

    (University of British Columbia
    Fraser Health)

  • Linda Riches

    (Patient Partner)

  • Ginny Landry

    (Patient Partner)

  • Kim McGrail

    (University of British Columbia)

  • Jehannine Austin

    (University of British Columbia
    University of British Columbia)

  • Stirling Bryan

    (University of British Columbia
    Vancouver Coastal Health Research Institute)

Abstract

Background Major depressive disorder (MDD) is a common, often recurrent condition and a significant driver of healthcare costs. People with MDD often receive pharmacological therapy as the first-line treatment, but the majority of people require more than one medication trial to find one that relieves symptoms without causing intolerable side effects. There is an acute need for more effective interventions to improve patients’ remission and quality of life and reduce the condition’s economic burden on the healthcare system. Pharmacogenomic (PGx) testing could deliver these objectives, using genomic information to guide prescribing decisions. With an already complex and multifaceted care pathway for MDD, future evaluations of new treatment options require a flexible analytic infrastructure encompassing the entire care pathway. Individual-level simulation models are ideally suited for this purpose. We sought to develop an economic simulation model to assess the effectiveness and cost effectiveness of PGx testing for individuals with major depression. Additionally, the model serves as an analytic infrastructure, simulating the entire patient pathway for those with MDD. Methods and Analysis Key stakeholders, including patient partners, clinical experts, researchers, and modelers, designed and developed a discrete-time microsimulation model of the clinical pathways of adults with MDD in British Columbia (BC), including all publicly-funded treatment options and multiple treatment steps. The Simulation Model of Major Depression (SiMMDep) was coded with a modular approach to enhance flexibility. The model was populated using multiple original data analyses conducted with BC administrative data, a systematic review, and an expert panel. The model accommodates newly diagnosed and prevalent adult patients with MDD in BC, with and without PGx-guided treatment. SiMMDep comprises over 1500 parameters in eight modules: entry cohort, demographics, disease progression, treatment, adverse events, hospitalization, costs and quality-adjusted life-years (payoff), and mortality. The model predicts health outcomes and estimates costs from a health system perspective. In addition, the model can incorporate interactive decision nodes to address different implementation strategies for PGx testing (or other interventions) along the clinical pathway. We conducted various forms of model validation (face, internal, and cross-validity) to ensure the correct functioning and expected results of SiMMDep. Conclusion SiMMDep is Canada’s first medication-specific, discrete-time microsimulation model for the treatment of MDD. With patient partner collaboration guiding its development, it incorporates realistic care journeys. SiMMDep synthesizes existing information and incorporates provincially-specific data to predict the benefits and costs associated with PGx testing. These predictions estimate the effectiveness, cost-effectiveness, resource utilization, and health gains of PGx testing compared with the current standard of care. However, the flexible analytic infrastructure can be adapted to support other policy questions and facilitate the rapid synthesis of new data for a broader search for efficiency improvements in the clinical field of depression.

Suggested Citation

  • Shahzad Ghanbarian & Gavin W. K. Wong & Mary Bunka & Louisa Edwards & Sonya Cressman & Tania Conte & Sandra Peterson & Rohit Vijh & Morgan Price & Christian Schuetz & David Erickson & Linda Riches & G, 2024. "A Canadian Simulation Model for Major Depressive Disorder: Study Protocol," PharmacoEconomics - Open, Springer, vol. 8(3), pages 493-505, May.
  • Handle: RePEc:spr:pharmo:v:8:y:2024:i:3:d:10.1007_s41669-024-00481-y
    DOI: 10.1007/s41669-024-00481-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41669-024-00481-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41669-024-00481-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    3. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    4. Julie A. Campbell & Glen J. Henson & Valery Fuh Ngwa & Hasnat Ahmad & Bruce V. Taylor & Ingrid Mei & Andrew J. Palmer, 2025. "Estimation of Transition Probabilities from a Large Cohort (> 6000) of Australians Living with Multiple Sclerosis (MS) for Changing Disability Severity Classifications, MS Phenotype, and Disease-Modif," PharmacoEconomics, Springer, vol. 43(2), pages 223-239, February.
    5. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    6. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    7. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    8. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    9. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    10. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    11. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    12. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    13. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    14. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    15. Nicolas Boespflug & Jérôme Wittwer & Antoine Bénard, 2024. "Factors associated with the author-reported cost-effectiveness threshold in high-income countries: systematic review and multivariable modelling," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(4), pages 631-639, June.
    16. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    17. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    18. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    19. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    20. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharmo:v:8:y:2024:i:3:d:10.1007_s41669-024-00481-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.