IDEAS home Printed from https://ideas.repec.org/a/spr/pharmo/v8y2024i2d10.1007_s41669-023-00461-8.html
   My bibliography  Save this article

Economic Evaluation of a Personalized Nutrition Plan Based on Omic Sciences Versus a General Nutrition Plan in Adults with Overweight and Obesity: A Modeling Study Based on Trial Data in Denmark

Author

Listed:
  • Milanne Maria Johanna Galekop

    (Erasmus School of Health Policy and Management)

  • Carin Uyl-de Groot

    (Erasmus School of Health Policy and Management)

  • William Ken Redekop

    (Erasmus School of Health Policy and Management)

Abstract

Background Since there is no diet that is perfect for everyone, personalized nutrition approaches are gaining popularity to achieve goals such as the prevention of obesity-related diseases. However, appropriate choices about funding and encouraging personalized nutrition approaches should be based on sufficient evidence of their effectiveness and cost-effectiveness. In this study, we assessed whether a newly developed personalized plan (PP) could be cost-effective relative to a non-personalized plan in Denmark. Methods Results of a 10-week randomized controlled trial were combined with a validated obesity economic model to estimate lifetime cost-effectiveness. In the trial, the intervention group (PP) received personalized home-delivered meals based on metabolic biomarkers and personalized behavioral change messages. In the control group these meals and messages were not personalized. Effects were measured in body mass index (BMI) and quality of life (EQ-5D-5L). Costs [euros (€), 2020] were considered from a societal perspective. Lifetime cost-effectiveness was assessed using a multi-state Markov model. Univariate, probabilistic sensitivity, and scenario analyses were performed. Results In the trial, no significant differences were found in the effectiveness of PP compared with control, but wide confidence intervals (CIs) were seen [e.g., BMI (−0.07, 95% CI −0.51, 0.38)]. Lifetime estimates showed that PP increased costs (€520,102 versus €518,366, difference: €1736) and quality-adjusted life years (QALYs) (15.117 versus 15.106, difference: 0.011); the incremental cost-utility ratio (ICUR) was therefore high (€158,798 to gain one QALY). However, a 20% decrease in intervention costs would reduce the ICUR (€23,668 per QALY gained) below an unofficial gross domestic product (GDP)-based willingness-to-pay threshold (€47,817 per QALY gained). Conclusion On the basis of the willingness-to-pay threshold and the non-significant differences in short-term effectiveness, PP may not be cost-effective. However, scaling up the intervention would reduce the intervention costs. Future studies should be larger and/or longer to reduce uncertainty about short-term effectiveness. Trial Registration Number ClinicalTrials.gov registry (NCT04590989).

Suggested Citation

  • Milanne Maria Johanna Galekop & Carin Uyl-de Groot & William Ken Redekop, 2024. "Economic Evaluation of a Personalized Nutrition Plan Based on Omic Sciences Versus a General Nutrition Plan in Adults with Overweight and Obesity: A Modeling Study Based on Trial Data in Denmark," PharmacoEconomics - Open, Springer, vol. 8(2), pages 313-331, March.
  • Handle: RePEc:spr:pharmo:v:8:y:2024:i:2:d:10.1007_s41669-023-00461-8
    DOI: 10.1007/s41669-023-00461-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41669-023-00461-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41669-023-00461-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    3. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    4. Julie A. Campbell & Glen J. Henson & Valery Fuh Ngwa & Hasnat Ahmad & Bruce V. Taylor & Ingrid Mei & Andrew J. Palmer, 2025. "Estimation of Transition Probabilities from a Large Cohort (> 6000) of Australians Living with Multiple Sclerosis (MS) for Changing Disability Severity Classifications, MS Phenotype, and Disease-Modif," PharmacoEconomics, Springer, vol. 43(2), pages 223-239, February.
    5. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    6. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    7. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    8. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    9. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    10. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    11. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    12. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    13. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    14. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    15. Nicolas Boespflug & Jérôme Wittwer & Antoine Bénard, 2024. "Factors associated with the author-reported cost-effectiveness threshold in high-income countries: systematic review and multivariable modelling," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(4), pages 631-639, June.
    16. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    17. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    18. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    19. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    20. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharmo:v:8:y:2024:i:2:d:10.1007_s41669-023-00461-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.