IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v16y2023i1d10.1007_s12063-022-00274-8.html
   My bibliography  Save this article

Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework

Author

Listed:
  • Tamie Takeda Yokoyama

    (University Center Educational Society of Santa Catarina)

  • Satie Ledoux Takeda-Berger

    (Federal University of Santa Catarina)

  • Marco Aurélio Oliveira

    (University Center Educational Society of Santa Catarina)

  • Andre Hideto Futami

    (University Center Educational Society of Santa Catarina)

  • Luiz Veriano Oliveira Dalla Valentina

    (University Center Educational Society of Santa Catarina)

  • Enzo Morosini Frazzon

    (Federal University of Santa Catarina)

Abstract

Bayesian networks (BNs) are recognized worldwide for their ability to work with reasoning involving uncertainty. BNs are formed by a directed acyclic graph whose nodes are random variables with different states with associated conditional probabilities. BN allows identifying and prioritizing where to act first and simulating its results to avoid costs with changes without significant results. On the other hand, the lean office (LO) philosophy is recognized for focusing on reducing waste (which does not add value to the product or service) applied to the office environment. One of its main tools is the value stream mapping (VSM), which assists in the lean transformation, aiming at the visualization and elimination of wastes. In this context, this paper aims to propose a framework for using BNs as a guide in the VSM elaboration to implement the LO, with prioritization of lead time (LD) reduction more reliably. To evaluate the validity of the proposed framework, a case study was conducted in a product development department of an electronics industry. The results demonstrated the feasibility and effectiveness of the proposed framework. Accordingly, the contributions of this paper are twofold. In theoretical terms, it promotes increased knowledge by exploring the combination of BNs with LO. In practical terms, the proposed framework is easy to apply and understand, allowing managers and professionals to implement it to reduce lead time in other types of processes in different industries. Thus, it can support decision-makers in eliminating waste in their processes.

Suggested Citation

  • Tamie Takeda Yokoyama & Satie Ledoux Takeda-Berger & Marco Aurélio Oliveira & Andre Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Enzo Morosini Frazzon, 2023. "Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework," Operations Management Research, Springer, vol. 16(1), pages 49-79, March.
  • Handle: RePEc:spr:opmare:v:16:y:2023:i:1:d:10.1007_s12063-022-00274-8
    DOI: 10.1007/s12063-022-00274-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-022-00274-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-022-00274-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuwei Jing & Zhanwen Niu & Pei-Chann Chang, 2019. "The application of VIKOR for the tool selection in lean management," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2901-2912, December.
    2. Yanzhen Li & Rapinder S. Sawhne & Joseph H. Wilck, 2013. "Applying Bayesian Network Techniques to Prioritize Lean Six Sigma Efforts," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 4(2), pages 1-15, April.
    3. Wenchi Shou & Jun Wang & Peng Wu & Xiangyu Wang & Heap-Yih Chong, 2017. "A cross-sector review on the use of value stream mapping," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3906-3928, July.
    4. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    5. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    6. Vanessa Fitri Sabur & Togar M. Simatupang, 2015. "Improvement of customer response time using Lean Office," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 20(1), pages 59-85.
    7. Yash Daultani & Mohit Goswami & Omkarprasad S. Vaidya & Sushil Kumar, 2019. "Inclusive risk modeling for manufacturing firms: a Bayesian network approach," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2789-2803, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Beyer & Oliver Ullrich, 2022. "Organizational Complexity as a Contributing Factor to Underperformance," Businesses, MDPI, vol. 2(1), pages 1-15, March.
    2. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    3. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    4. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    5. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    6. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    7. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    8. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    9. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    10. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    11. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Dayong Li & Zengchuan Dong & Liyao Shi & Jintao Liu & Zhenye Zhu & Wei Xu, 2019. "Risk Probability Assessment of Sudden Water Pollution in the Plain River Network Based on Random Discharge from Multiple Risk Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4051-4065, September.
    13. Tiller, Rachel Gjelsvik & Hansen, Lillian & Richards, Russell & Strand, Hillevi, 2015. "Work segmentation in the Norwegian salmon industry: The application of segmented labor market theory to work migrants on the island community of Frøya, Norway," Marine Policy, Elsevier, vol. 51(C), pages 563-572.
    14. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    15. Jinjia Zhang & Yiping Zeng & Genserik Reniers & Jie Liu, 2022. "Analysis of the Interaction Mechanism of the Risk Factors of Gas Explosions in Chinese Underground Coal Mines," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    16. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    17. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    18. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    20. Mastrangelo, Matias Enrique & Sun, Zhanli & Seghezzo, Lucas & Müller, Daniel, 2019. "Survey-based modeling of land-use intensity in agricultural frontiers of the Argentine dry Chaco," Land Use Policy, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:16:y:2023:i:1:d:10.1007_s12063-022-00274-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.