IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i3d10.1007_s12351-020-00608-z.html
   My bibliography  Save this article

MIP model-based heuristics for the minimum weighted tree reconstruction problem

Author

Listed:
  • Olga Fajarda

    (University of Aveiro)

  • Cristina Requejo

    (University of Aveiro)

Abstract

We consider the minimum weighted tree reconstruction (MWTR) problem and two matheuristic methods to obtain optimal or near-optimal solutions: the Feasibility Pump heuristic and the Local Branching heuristic. These matheuristics are based on a Mixed Integer Programming model used to find feasible solutions. We discuss the applicability and effectiveness of the matheuristics to obtain solutions to the MWTR problem. The purpose of the MWTR problem is to find a minimum weighted tree connecting a set of leaves in such a way that the length of the path between each pair of leaves is greater than or equal to a given distance between the considered pair of leaves. The Feasibility Pump matheuristic starts with the Linear Programming solution, iteratively fixes the values of some variables and solves the corresponding problem until a feasible solution is achieved. The Local Branching matheuristic, in its turn, improves a feasible solution by using a local search. Computational results using two different sets of instances, one from the phylogenetic area and another from the telecommunications area, show that these matheuristics are quite effective in finding feasible solutions and present small gap values. Each matheuristic can be used independently; however, the best results are obtained when used together. For instances of the problem having up to 17 leaves, the feasible solution obtained by the Feasibility Pump heuristic is improved by the Local Branching heuristic. Noticeably, when comparing with existing based models processes that solve instances having up to 15 leaves, this achievement of the matheuristic increases the size of solved instances.

Suggested Citation

  • Olga Fajarda & Cristina Requejo, 2022. "MIP model-based heuristics for the minimum weighted tree reconstruction problem," Operational Research, Springer, vol. 22(3), pages 2305-2342, July.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00608-z
    DOI: 10.1007/s12351-020-00608-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00608-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00608-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catanzaro, Daniele & Aringhieri, Roberto & Di Summa, Marco & Pesenti, Raffaele, 2015. "A branch-price-and-cut algorithm for the minimum evolution problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 753-765.
    2. Geert Soete, 1983. "A least squares algorithm for fitting additive trees to proximity data," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 621-626, December.
    3. Fortz, Bernard & Oliveira, Olga & Requejo, Cristina, 2017. "Compact mixed integer linear programming models to the minimum weighted tree reconstruction problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 242-251.
    4. Daniele CATANZARO & Roberto ARINGHIERI & Mardo DI SUMMA & Raffaele PESENTI, 2015. "A branch-price-and-cut algorithm for the minimum evolution problem," LIDAM Reprints CORE 2767, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Shmuel Sattath & Amos Tversky, 1977. "Additive similarity trees," Psychometrika, Springer;The Psychometric Society, vol. 42(3), pages 319-345, September.
    6. James Corter & Amos Tversky, 1986. "Extended similarity trees," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 429-451, September.
    7. Daniele Catanzaro & Martine Labbé & Raffaele Pesenti & Juan-José Salazar-González, 2012. "The Balanced Minimum Evolution Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 276-294, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fortz, Bernard & Oliveira, Olga & Requejo, Cristina, 2017. "Compact mixed integer linear programming models to the minimum weighted tree reconstruction problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 242-251.
    2. Catanzaro, Daniele & Frohn, Martin & Gascuel, Olivier & Pesenti, Raffaele, 2023. "A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 2023001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Catanzaro, Daniele & Frohn, Martin & Pesenti, Raffaele, 2021. "A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 2021023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Catanzaro, Daniele & Frohn, Martin & Gascuel, Olivier & Pesenti, Raffaele, 2022. "A tutorial on the balanced minimum evolution problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 1-19.
    5. Catanzaro, Daniele & Frohn, Martin & Gascuel, Olivier & Pesenti, Raffaele, 2021. "A Tutorial on the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 20210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Gasparin, Andrea & Camerota Verdù, Federico Julian & Catanzaro, Daniele, 2023. "An evolution strategy approach for the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 2023021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Catanzaro, Daniele & Frohn, Martin & Pesenti, Raffaele, 2021. "On Numerical Stability and Statistical Consistency of the Balanced Minimum Evolution Problem," LIDAM Discussion Papers CORE 2021026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. J. Carroll & James Corter, 1995. "A graph-theoretic method for organizing overlapping clusters into trees, multiple trees, or extended trees," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 283-313, September.
    9. Lant, Theresa & Shapira, Zur, 2008. "Managerial reasoning about aspirations and expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 66(1), pages 60-73, April.
    10. A. Penttinen & W. Krzanowski & J. Kettenring & F. Rohlf & William Day & B. Weir & John Kececioglu & N. Ohsumi & Peter Willett, 1993. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 125-156, January.
    11. Wedel, Michel & DeSarbo, Wayne S., 1996. "Semiparametric estimation of (constrained) ultrametric trees," Research Report 96B34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Geert Soete, 1986. "Optimal variable weighting for ultrametric and additive tree clustering," Quality & Quantity: International Journal of Methodology, Springer, vol. 20(2), pages 169-180, June.
    13. K. Klauer & J. Carroll, 1989. "A mathematical programming approach to fitting general graphs," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 247-270, December.
    14. Robert Coles & Gerard P. Hodgkinson, 2008. "A Psychometric Study of Information Technology Risks in the Workplace," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 81-93, February.
    15. repec:dgr:rugsom:96b34 is not listed on IDEAS
    16. J. Hutchinson & Amitabh Mungale, 1997. "Pairwise partitioning: A nonmetric algorithm for identifying feature-based similarity structures," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 85-117, March.
    17. Catanzaro, Daniele & Aringhieri, Roberto & Di Summa, Marco & Pesenti, Raffaele, 2015. "A branch-price-and-cut algorithm for the minimum evolution problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 753-765.
    18. Varone, Sacha C., 2006. "A constructive algorithm for realizing a distance matrix," European Journal of Operational Research, Elsevier, vol. 174(1), pages 102-111, October.
    19. Wayne DeSarbo & Michael Johnson & Ajay Manrai & Lalita Manrai & Elizabeth Edwards, 1992. "Tscale: A new multidimensional scaling procedure based on tversky's contrast model," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 43-69, March.
    20. Olivier Gascuel & Denise Levy, 1996. "A reduction algorithm for approximating a (nonmetric) dissimilarity by a tree distance," Journal of Classification, Springer;The Classification Society, vol. 13(1), pages 129-155, March.
    21. Theresa Lant & Zur Shapira, 2009. "Managerial Reasoning about Aspirations and Expectations," Discussion Paper Series dp498, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00608-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.