IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v19y2019i2d10.1007_s12351-017-0304-y.html
   My bibliography  Save this article

Analysis of an ND-policy Geo/G/1 queue and its application to wireless sensor networks

Author

Listed:
  • Renbin Liu

    (Chongqing University of Technology
    University of Pretoria)

  • Attahiru Sule Alfa

    (University of Pretoria
    University of Manitoba)

  • Miaomiao Yu

    (Sichuan University of Science and Engineering)

Abstract

In this paper, we consider a discrete-time Geo/G/1 queue controlled by the combination of the N and D policies (called ND-policy). In this system, when there are N waiting customers or the service time backlog of all waiting customers exceeds a given threshold D, whichever emerges first, the idle server immediately resumes its service. Under this policy, since the service times of the customers arriving during the idle period, conditioned on the number of these customers, are dependent, and stochastically different from the service times of the customers arriving during the busy period, the customers in the system are classified into two types. Based on this classification, we first derive the probability generating functions and means of the queue length, idle and busy periods, service time backlog, waiting time and sojourn time, where the busy period is first studied in the discrete-time queues involving the D-policy. Next, by analyzing some results and flaws in the work of Gu et al. (J Syst Sci Complex, 2016. doi: 10.1007/s11424-016-4180-y ), we theoretically show the discrepancies that could arise if the conditional dependency of the service times of the customers arriving during the idle period is ignored. Finally, the numerical examples are provided to study the effects of different parameters on the mean queue length. Through an energy consumption optimization problem in wireless sensor networks, the application of our queueing model in the real world is illustrated, and the flaws that resulted from the results by Gu et al. (J Syst Sci Complex, 2016. doi: 10.1007/s11424-016-4180-y ) are numerically revealed.

Suggested Citation

  • Renbin Liu & Attahiru Sule Alfa & Miaomiao Yu, 2019. "Analysis of an ND-policy Geo/G/1 queue and its application to wireless sensor networks," Operational Research, Springer, vol. 19(2), pages 449-477, June.
  • Handle: RePEc:spr:operea:v:19:y:2019:i:2:d:10.1007_s12351-017-0304-y
    DOI: 10.1007/s12351-017-0304-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-017-0304-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-017-0304-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lotfi Tadj & Gautam Choudhury, 2005. "Optimal design and control of queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 359-412, December.
    2. S. W. Fuhrmann & Robert B. Cooper, 1985. "Stochastic Decompositions in the M / G /1 Queue with Generalized Vacations," Operations Research, INFORMS, vol. 33(5), pages 1117-1129, October.
    3. J. George Shanthikumar, 1988. "On Stochastic Decomposition in M / G /1 Type Queues with Generalized Server Vacations," Operations Research, INFORMS, vol. 36(4), pages 566-569, August.
    4. K. R. Balachandran, 1973. "Control Policies for a Single Server System," Management Science, INFORMS, vol. 19(9), pages 1013-1018, May.
    5. O. J. Boxma, 1976. "Note--Note on a Control Problem of Balachandran and Tijms," Management Science, INFORMS, vol. 22(8), pages 916-917, April.
    6. Jewgeni H. Dshalalow, 1996. "On applications of excess level processes to (N,D)-policy bulk queueing systems," International Journal of Stochastic Analysis, Hindawi, vol. 9, pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Yuh Yang & Po-Kai Chang, 2015. "A parametric programming solution to the -policy queue with fuzzy parameters," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(4), pages 590-598, March.
    2. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    3. Zhang, Xuelu & Wang, Jinting & Do, Tien Van, 2015. "Threshold properties of the M/M/1 queue under T-policy with applications," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 284-301.
    4. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    5. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    6. I. Atencia & G. Bouza & P. Moreno, 2008. "An M [X] /G/1 retrial queue with server breakdowns and constant rate of repeated attempts," Annals of Operations Research, Springer, vol. 157(1), pages 225-243, January.
    7. P. Rajadurai & V. M. Chandrasekaran & M. C. Saravanarajan, 2016. "Analysis of an M[X]/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 197-223, March.
    8. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    9. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region method: Part II, the multi-station case," Economics Working Papers 314, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 1998.
    10. Dimitris Bertsimas & José Niño-Mora, 1999. "Optimization of Multiclass Queueing Networks with Changeover Times Via the Achievable Region Approach: Part I, The Single-Station Case," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 306-330, May.
    11. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    12. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    13. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    14. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    15. Awi Federgruen & Ziv Katalan, 1998. "Determining Production Schedules Under Base-Stock Policies in Single Facility Multi-Item Production Systems," Operations Research, INFORMS, vol. 46(6), pages 883-898, December.
    16. Jau-Chuan Ke, 2006. "An M/G/1 queue under hysteretic vacation policy with an early startup and un-reliable server," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 357-369, May.
    17. Hideaki Takagi & Tetsuya Takine & Onno J. Boxma, 1992. "Distribution of the workload in multiclass queueing systems with server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(1), pages 41-52, February.
    18. Zhang, Zhe G. & Tian, Naishuo, 2004. "An analysis of queueing systems with multi-task servers," European Journal of Operational Research, Elsevier, vol. 156(2), pages 375-389, July.
    19. Terekhov, Daria & Christopher Beck, J., 2009. "An extended queueing control model for facilities with front room and back room operations and mixed-skilled workers," European Journal of Operational Research, Elsevier, vol. 198(1), pages 223-231, October.
    20. I. Atencia & P. Moreno, 2006. "A Discrete-Time Geo/ G/1 retrial queue with the server subject to starting failures," Annals of Operations Research, Springer, vol. 141(1), pages 85-107, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:19:y:2019:i:2:d:10.1007_s12351-017-0304-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.