IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v98y2019i1d10.1007_s11069-018-3510-x.html
   My bibliography  Save this article

Effects of urban development on future multi-hazard risk: the case of Vancouver, Canada

Author

Listed:
  • Stephanie E. Chang

    (University of British Columbia
    University of British Columbia)

  • Jackie Z. K. Yip

    (University of British Columbia)

  • Wendy Tse

    (University of British Columbia)

Abstract

Disaster risk reduction should anticipate how future natural hazard risk would be influenced by changes in urban vulnerability. This paper investigates the effect of one key driver of change, urban development. It models current and future risk for the year 2041 in a rapidly growing urban area, Vancouver, Canada, from both earthquake and coastal flood hazard. Three urban development futures are considered—status quo, compact, and sprawled development—that differ in the housing stock configuration used to accommodate an identical, projected increase in population and dwellings. Results indicate that while exposure is expected to increase substantially in future, the implications for risk vary greatly between hazards and impact types. For earthquake, population increase is attenuated by improvements in the building stock, whereas for flooding, disaster impacts increase at a much higher rate than population growth. Overall, disruption impacts are more sensitive than damage to changes in population and development. The effect of urban development on future risk is not unidirectional, but depends upon hazard type, impact type, and degree of climate change. None of the development futures is consistently best from a risk perspective, but along many dimensions, compact development yields more severe disaster impacts relative to status quo development. The findings underscore the importance of considering natural hazard risk in urban development planning, and of recognizing the inherent differences between hazards and impact types in this planning.

Suggested Citation

  • Stephanie E. Chang & Jackie Z. K. Yip & Wendy Tse, 2019. "Effects of urban development on future multi-hazard risk: the case of Vancouver, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 251-265, August.
  • Handle: RePEc:spr:nathaz:v:98:y:2019:i:1:d:10.1007_s11069-018-3510-x
    DOI: 10.1007/s11069-018-3510-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3510-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3510-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    2. Reinhard Mechler & Laurens Bouwer, 2015. "Understanding trends and projections of disaster losses and climate change: is vulnerability the missing link?," Climatic Change, Springer, vol. 133(1), pages 23-35, November.
    3. G. Grünthal & A. Thieken & J. Schwarz & K. Radtke & A. Smolka & B. Merz, 2006. "Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 21-44, May.
    4. Laurens M. Bouwer, 2013. "Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 915-930, May.
    5. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.
    6. Lee, Yoonjeong & Brody, Samuel D., 2018. "Examining the impact of land use on flood losses in Seoul, Korea," Land Use Policy, Elsevier, vol. 70(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    2. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    3. Belinda Storey & Sally Owen & Christian Zammit & Ilan Noy, 2024. "Insurance retreat in residential properties from future sea level rise in Aotearoa New Zealand," Climatic Change, Springer, vol. 177(3), pages 1-21, March.
    4. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    5. Fatma Yerlikaya-Özkurt & Aysegul Askan, 2020. "Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3163-3180, September.
    6. Bin Ou-Yang & Chun-Chao Chu & Ya-Bin Da & Xiao-Fei Liu & Hai-Ying Zhang, 2015. "Highway flood disaster risk evaluation and management in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 381-397, February.
    7. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    8. Rachel Clissold & Ellie Furlong & Karen E. McNamara & Ross Westoby & Anita Latai-Niusulu, 2023. "How Pacifika Arts Reveal Interconnected Losses for People and Place in a Changing Climate," Land, MDPI, vol. 12(4), pages 1-19, April.
    9. Cheol Hee Son & Yong Un Ban, 2022. "Flood vulnerability characteristics considering environmental justice and urban disaster prevention plan in Seoul, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3185-3204, December.
    10. Daniela Smiraglia & Alice Cavalli & Chiara Giuliani & Francesca Assennato, 2023. "The Increasing Coastal Urbanization in the Mediterranean Environment: The State of the Art in Italy," Land, MDPI, vol. 12(5), pages 1-17, May.
    11. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Hongbo Liu, 2018. "How Can Cities Adapt to a Multi-Disaster Environment? Empirical Research in Guangzhou (China)," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    12. Ianoş, Ioan & Ionică, Cristian & Sîrodoev, Igor & Sorensen, Anthony & Bureţa, Emanuel & Merciu, George & Paraschiv, Mirela & Tălângă, Cristian, 2019. "Inadequate risk management and excessive response to flood disaster create unexpected land use changes and potential local conflicts," Land Use Policy, Elsevier, vol. 88(C).
    13. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    14. Adnan, Mohammed Sarfaraz Gani & Abdullah, Abu Yousuf Md & Dewan, Ashraf & Hall, Jim W., 2020. "The effects of changing land use and flood hazard on poverty in coastal Bangladesh," Land Use Policy, Elsevier, vol. 99(C).
    15. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    16. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.
    17. Tsan‐Ming Choi & James H. Lambert, 2017. "Advances in Risk Analysis with Big Data," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1435-1442, August.
    18. Seda Ertan & Rahmi Nurhan Çelik, 2021. "The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    19. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Shen, Guoqiang & Zhou, Long & Xue, Xianwu & Zhou, Yu, 2023. "The risk impacts of global natural and technological disasters," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:98:y:2019:i:1:d:10.1007_s11069-018-3510-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.