IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i1d10.1007_s11069-018-3398-5.html
   My bibliography  Save this article

A historical geomorphological approach to flood hazard management along the shore of an alpine lake (northern Italy)

Author

Listed:
  • F. Luino

    (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI))

  • A. Belloni

    (Regione Lombardia, Direzione Generale, Sicurezza, Protezione Civile e Immigrazione)

  • L. Turconi

    (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI))

  • F. Faccini

    (DISTAV – Universita′ di Genova)

  • A. Mantovani

    (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI))

  • P. Fassi

    (Regione Lombardia, Protezione Civile, Coordinamento Service Tecnico H24)

  • F. Marincioni

    (Universita’ Politecnica delle Marche)

  • G. Caldiroli

    (Regione Lombardia, Direzione Generale, Sicurezza, Protezione Civile e Immigrazione)

Abstract

A project to develop a flood hazard management plan along the east shore of Lago Maggiore was carried out. Several municipal territories along a coastal stretch have been analysed, identifying the rate of water rise and the limits of the submerged areas. This study discusses the overall methodological approach and presents the results for Porto Valtravaglia, as a significant case study. The first step was a detailed analysis of historical events to locate the most frequently damaged sites. Thousands of historical documents on past floods were collected, selected and validated, to map the most vulnerable sites. The second step was a morphological analysis of the studied coastal stretch. Multi-temporal aerial snap-shots were used and field surveys were conducted to verify the reliability of the historical data and to identify the critical hydraulic conditions along the shore. The third step was a review of the general urban development plans of the 17 studied municipalities. Aerophotogrammetric and cadastral maps were used to evidence and define the eight classes of land use destinations. In addition, the floodable areas were divided into three vulnerability and exposure categories considering different peculiarities of social and working life. Finally, using GIS spatial analysis tools, these data were compiled into risk maps and wielded as the municipal emergency plans’ baseline scenarios. For each studied municipality was hypothesised the alarm thresholds upon which were activated the flood emergency procedures.

Suggested Citation

  • F. Luino & A. Belloni & L. Turconi & F. Faccini & A. Mantovani & P. Fassi & F. Marincioni & G. Caldiroli, 2018. "A historical geomorphological approach to flood hazard management along the shore of an alpine lake (northern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 471-488, October.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3398-5
    DOI: 10.1007/s11069-018-3398-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3398-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3398-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Stevens & Yan Song & Philip Berke, 2010. "New Urbanist developments in flood-prone areas: safe development, or safe development paradox?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 605-629, June.
    2. Elisabeth Krausmann & Elisabetta Renni & Michela Campedel & Valerio Cozzani, 2011. "Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 285-300, October.
    3. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    4. S. Surminski & J. Aerts & W. Botzen & P. Hudson & J. Mysiak & C. Pérez-Blanco, 2015. "Reflections on the current debate on how to link flood insurance and disaster risk reduction in the European Union," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1451-1479, December.
    5. Darren Lumbroso & Karin Stone & Freddy Vinet, 2011. "An assessment of flood emergency plans in England and Wales, France and the Netherlands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 341-363, July.
    6. Alena Kadetova & Yan Radziminovich, 2014. "The catastrophic flood in Transbaikalia (Central Asia) in 1897: case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 423-441, June.
    7. Gerardo Benito & Michel Lang & Mariano Barriendos & M. Llasat & Felix Francés & Taha Ouarda & Varyl Thorndycraft & Yehouda Enzel & Andras Bardossy & Denis Coeur & Bernard Bobée, 2004. "Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(3), pages 623-643, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Luino & Mariano Barriendos & Fabrizio Terenzio Gizzi & Ruediger Glaser & Christoph Gruetzner & Walter Palmieri & Sabina Porfido & Heather Sangster & Laura Turconi, 2023. "Historical Data for Natural Hazard Risk Mitigation and Land Use Planning," Land, MDPI, vol. 12(9), pages 1-21, September.
    2. Mao Ouyang & Yuka Ito & Tomochika Tokunaga, 2021. "Effects of geomorphological and geohydrological features on flood hazard in a coastal basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1371-1385, June.
    3. Alena V. Kadetova & Yan B. Radziminovich, 2020. "Historical floods within the Selenga river basin: chronology and extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 579-598, August.
    4. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    2. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    3. Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
    4. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    5. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    6. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    7. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    8. Kwan Ok Lee & Hyojung Lee, 2022. "Public responses to COVID‐19 case disclosure and their spatial implications," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 732-756, June.
    9. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    10. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    11. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    12. Junfei Chen & Juan Ji & Huimin Wang & Menghua Deng & Cong Yu, 2020. "Risk Assessment of Urban Rainstorm Disaster Based on Multi-Layer Weighted Principal Component Analysis: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 17(15), pages 1-19, July.
    13. Mel Oliveira Guirro & Gean Paulo Michel, 2023. "Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 723-743, May.
    14. Cheol Hee Son & Yong Un Ban, 2022. "Flood vulnerability characteristics considering environmental justice and urban disaster prevention plan in Seoul, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3185-3204, December.
    15. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    16. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    17. Meiling Zhou & Xiuli Feng & Kaikai Liu & Chi Zhang & Lijian Xie & Xiaohe Wu, 2021. "An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    18. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    19. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3398-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.