IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p1219-1230.html
   My bibliography  Save this article

Interaction between land-use change, flooding and human health in Metro Vancouver, Canada

Author

Listed:
  • Amin Owrangi
  • Robert Lannigan
  • Slobodan Simonovic

Abstract

Many regions of the world are experiencing an increase in frequency and intensity of floods. There has been increasing understanding among emergency preparedness and natural disaster planners that rapid urbanization is enhancing the risk from river flooding in urban areas. Many regions of Canada have been exposed to particularly severe floods over the course of the last few years, much of this due to land-use change. This study aims at understanding the risk of flooding for the City of Metro Vancouver, British Columbia, Canada, which is located in the Fraser River Delta. The paper presents a fast, efficient and reliable method that can be used to produce vegetation maps from advanced very high resolution radiometer images and SPOT vegetation maps. A 10-day maximum normalized difference vegetation index maps were produced to assess the dynamics of the urbanization process in Vancouver. Remotely sensed data show a significant decrease in vegetation cover in the Metro Vancouver City between 1984 and 2012. The proposed method can be used as an effective tool for raising early land-use change awareness and assist with flood risk management. Flood risk management has a substantial impact on human health and well-being in urban areas, and this flood risk information will be used to assess the impact of flooding and explore the complex relationship between land-use change, urbanization, flooding and impact on urban dwellers. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Amin Owrangi & Robert Lannigan & Slobodan Simonovic, 2014. "Interaction between land-use change, flooding and human health in Metro Vancouver, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1219-1230, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:1219-1230
    DOI: 10.1007/s11069-014-1064-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1064-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1064-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katie K. Arkema & Greg Guannel & Gregory Verutes & Spencer A. Wood & Anne Guerry & Mary Ruckelshaus & Peter Kareiva & Martin Lacayo & Jessica M. Silver, 2013. "Coastal habitats shield people and property from sea-level rise and storms," Nature Climate Change, Nature, vol. 3(10), pages 913-918, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darshan Anil Sansare & Sumedh Yamaji Mhaske, 2020. "Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1117-1136, February.
    2. P. E. Zope & T. I. Eldho & V. Jothiprakash, 2017. "Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1267-1283, July.
    3. Chris G. Buse & Aita Bezzola & Jordan Brubacher & Tim K. Takaro & Arthur L. Fredeen & Margot W. Parkes, 2022. "Cumulative Impacts of Diverse Land Uses in British Columbia, Canada: Application of the “EnviroScreen” Method," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    4. Jiake Li & Chenning Deng & Huaien Li & Menghua Ma & Yajiao Li, 2018. "Hydrological Environmental Responses of LID and Approach for Rainfall Pattern Selection in Precipitation Data-Lacked Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3271-3284, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    2. Edward B. Barbier, 2016. "The Protective Value of Estuarine and Coastal Ecosystem Services in a Wealth Accounting Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 37-58, May.
    3. Bifani, Paolo & Agardy, Tundi & Vivas Eugui, David & Jaramillo, Lorena & Gómez- García, René & Vignati, Federico, . "Blue BioTrade: Harnessing Marine Trade to Support Ecological Sustainability and Economic Equity," Books, CAF Development Bank Of Latinamerica, number 1415.
    4. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    5. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    6. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
    7. Wenxiu Xing & Yuan Chi & Xuejian Ma & Dahai Liu, 2021. "Spatiotemporal Characteristics of Vegetation Net Primary Productivity on an Intensively-Used Estuarine Alluvial Island," Land, MDPI, vol. 10(2), pages 1-26, January.
    8. Georgia Warren-Myers & Gideon Aschwanden & Franz Fuerst & Andy Krause, 2018. "Estimating the Potential Risks of Sea Level Rise for Public and Private Property Ownership, Occupation and Management," Risks, MDPI, vol. 6(2), pages 1-21, April.
    9. Kim, Choong-Ki & Jang, Seonju & Kim, Tae Yun, 2018. "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Elsevier, vol. 120(C), pages 151-162.
    10. Yurek, Simeon & Eaton, Mitchell J. & Lavaud, Romain & Laney, R. Wilson & DeAngelis, Donald L. & Pine, William E. & La Peyre, Megan & Martin, Julien & Frederick, Peter & Wang, Hongqing & Lowe, Michael , 2021. "Modeling structural mechanics of oyster reef self-organization including environmental constraints and community interactions," Ecological Modelling, Elsevier, vol. 440(C).
    11. Jing Zhang & Yan Zhang & Huw Lloyd & Zhengwang Zhang & Donglai Li, 2021. "Rapid Reclamation and Degradation of Suaeda salsa Saltmarsh along Coastal China’s Northern Yellow Sea," Land, MDPI, vol. 10(8), pages 1-13, August.
    12. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    13. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    14. Maddalena Floris & Vittorio Gazale & Federica Isola & Francesca Leccis & Salvatore Pinna & Cheti Pira, 2020. "The Contribution of Ecosystem Services in Developing Effective and Sustainable Management Practices in Marine Protected Areas. The Case Study of “Isola dell’Asinara”," Sustainability, MDPI, vol. 12(3), pages 1-32, February.
    15. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    16. Thomas C. Malone & Paul M. DiGiacomo & Emanuel Gonçalves & Anthony H. Knap & Liana Talaue‐McManus & Stephen de Mora & Jose Muelbert, 2014. "Enhancing the Global Ocean Observing System to meet evidence based needs for the ecosystem‐based management of coastal ecosystem services," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 168-181, August.
    17. Sonter, Laura J. & Johnson, Justin A. & Nicholson, Charles C. & Richardson, Leif L. & Watson, Keri B. & Ricketts, Taylor H., 2017. "Multi-site interactions: Understanding the offsite impacts of land use change on the use and supply of ecosystem services," Ecosystem Services, Elsevier, vol. 23(C), pages 158-164.
    18. Jacob, Céline & Bernatchez, Pascal & Dupras, Jérôme & Cusson, Mathieu, 2021. "Not just an engineering problem: The role of knowledge and understanding of ecosystem services for adaptive management of coastal erosion," Ecosystem Services, Elsevier, vol. 51(C).
    19. Clément Feger & Laurent Mermet & Emily Mckenzie & Bhaskar Vira, 2017. "Improving Decisions with Biodiversity and Ecosystem Services Information," Working Papers hal-01930929, HAL.
    20. Yui Omori, 2021. "Preference Heterogeneity of Coastal Gray, Green, and Hybrid Infrastructure against Sea-Level Rise: A Choice Experiment Application in Japan," Sustainability, MDPI, vol. 13(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:1219-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.