IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i1p241-254.html
   My bibliography  Save this article

Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan

Author

Listed:
  • Mohsin Butt
  • Muhammad Umar
  • Raheel Qamar

Abstract

On the morning of January 4, 2010, a massive landslide swept the Attabad and Sarat villages into the Hunza River. The debris from the landslide blocked the low-lying river, creating a barrier lake in the area and poses a major threat to the villages located downstream. The aim of the current study was to evaluate the environmental advantages and disadvantages created by the formation of the artificial lake. For this purpose, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to create the contours and triangulated irregular network (TIN) of the region. Data from ‘Google Earth’ image on March 19, 2010 were used as the reference and to determine the river bed elevation of the study area. Landsat satellite data of Enhanced Thematic Mapper Plus (ETM+) sensor on January 10, March 15, April 24 and May 2, 2010, were used for constructing the Geographic Information System (GIS) layers of the river banks, land use area, overbank flow area and water area estimation. Our results show that the area covered by the water in the lake has increased from 1.28 km 2 on January 10, 2010 to 6.25 km 2 on May 2, 2010. The total upstream urban area affected by the river blockage is 13.99 km 2 . We also applied the Hydrologic Engineering Center River Analysis System (HEC-RAS) model to estimate the potential catastrophes due to dam burst for different peak outflow scenarios with conclusions and recommendations. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:241-254
    DOI: 10.1007/s11069-012-0361-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0361-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0361-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsin Butt & Ahmad Waqas & Rashed Mahmood, 2010. "The Combined Effect of Vegetation and Soil Erosion in the Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3701-3714, October.
    2. Michel Jaboyedoff & Thierry Oppikofer & Antonio Abellán & Marc-Henri Derron & Alex Loye & Richard Metzger & Andrea Pedrazzini, 2012. "Use of LIDAR in landslide investigations: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 5-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxue Ma & Jian Chen & Zhijiu Cui & Wendy Zhou & Ruichen Chen & Chengbiao Wang, 2022. "Reconstruction of catastrophic outburst floods of the Diexi ancient landslide-dammed lake in the Upper Minjiang River, Eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1191-1221, June.
    2. Hasnain Gardezi & Muhammad Bilal & Qiangong Cheng & Aiguo Xing & Yu Zhuang & Tahir Masood, 2021. "A comparative analysis of attabad landslide on january 4, 2010, using two numerical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 519-538, May.
    3. Jianqi Zhuang & Kecheng Jia & Jiewei Zhan & Yi Zhu & Chenglong Zhang & Jiaxu Kong & Chenhui Du & Shibao Wang & Yanbo Cao & Jianbing Peng, 2022. "Scenario simulation of the geohazard dynamic process of large-scale landslides: a case study of the Xiaomojiu landslide along the Jinsha River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1337-1357, June.
    4. Sen Tian & Xuanyan Dai & Guangjin Wang & Yiyu Lu & Jie Chen, 2021. "Formation and evolution characteristics of dam breach and tailings flow from dam failure: an experimental study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1621-1638, June.
    5. Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    2. Gianluca Esposito & Cristiano Carabella & Giorgio Paglia & Enrico Miccadei, 2021. "Relationships between Morphostructural/Geological Framework and Landslide Types: Historical Landslides in the Hilly Piedmont Area of Abruzzo Region (Central Italy)," Land, MDPI, vol. 10(3), pages 1-28, March.
    3. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    4. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    5. Anil Misra, 2011. "Impact of Urbanization on the Hydrology of Ganga Basin (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 705-719, January.
    6. Zhen Du & Li Feng & Haiheng Wang & Ying Dong & Da Luo & Xu Zhang & Hao Liu & Maosheng Zhang, 2023. "Identification of Ground Deformation Patterns in Coal Mining Areas via Rapid Topographical Analysis," Land, MDPI, vol. 12(6), pages 1-18, June.
    7. Kamila Pawluszek, 2019. "Landslide features identification and morphology investigation using high-resolution DEM derivatives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 311-330, March.
    8. César Antonio Rodríguez González & Ángel Mariano Rodríguez-Pérez & Raúl López & José Antonio Hernández-Torres & Julio José Caparrós-Mancera, 2022. "Sensitivity Analysis in Mean Annual Sediment Yield Modeling with Respect to Rainfall Probability Distribution Functions," Land, MDPI, vol. 12(1), pages 1-22, December.
    9. Paschalis D. Koutalakis & Ourania A. Tzoraki & Georgios I. Prazioutis & Georgios T. Gkiatas & George N. Zaimes, 2021. "Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    10. Giorgos Mallinis & Ioannis Z. Gitas & Georgios Tasionas & Fotis Maris, 2016. "Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1255-1269, February.
    11. Sebastiano Trevisani & Pietro Daniel Omodeo, 2021. "Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities," Land, MDPI, vol. 10(3), pages 1-17, March.
    12. Iris Bostjančić & Marina Filipović & Vlatko Gulam & Davor Pollak, 2021. "Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    13. E. Luzio & P. Mazzanti & A. Brunetti & M. Baleani, 2020. "Assessment of tectonic-controlled rock fall processes threatening the ancient Appia route at the Aurunci Mountain pass (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 909-937, July.
    14. Mirko Francioni & Riccardo Salvini & Doug Stead & John Coggan, 2018. "Improvements in the integration of remote sensing and rock slope modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 975-1004, January.
    15. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.
    16. Carlo Robiati & Giandomenico Mastrantoni & Mirko Francioni & Matthew Eyre & John Coggan & Paolo Mazzanti, 2023. "Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling," Land, MDPI, vol. 12(1), pages 1-20, January.

    More about this item

    Keywords

    Attabad; ASTER; ETM+; HEC-RAS; Arc-GIS;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:241-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.