IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i3d10.1007_s11069-021-05141-6.html
   My bibliography  Save this article

Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey

Author

Listed:
  • Hakan Aksu

    (Samsun University)

  • Mahmut Cetin

    (Cukurova University)

  • Hafzullah Aksoy

    (Istanbul Technical University)

  • Sait Genar Yaldiz

    (Yildiz Technical University
    Istanbul Technical University)

  • Isilsu Yildirim

    (Istanbul Technical University)

  • Gulsah Keklik

    (Cukurova University)

Abstract

This study characterises the spatial and temporal behaviours of maximum precipitation over the Black Sea Region in northern Turkey. Maximum precipitation data of 14 standard durations changing from 5 min to 24 h were used from 21 meteorological stations in the region with record lengths ranging from 25 to 71 years. In line with the objective of the study, tests for the detection of outliers, homogeneity, and trend were applied in order to reveal the structural characteristics of the data set. Tests detected no outlier, and the homogeneity analysis found only three stations fully homogeneous, all others being inhomogeneous. Change points identified in the data set by the homogeneity tests were linked to the local characteristics of meteorological stations. Trend analysis revealed that slightly more than half of the meteorological stations are exposed to a positive trend in the maximum precipitation of one standard duration at a minimum. The main conclusion is that maximum precipitation is subject to change over the Black Sea Region in Turkey.

Suggested Citation

  • Hakan Aksu & Mahmut Cetin & Hafzullah Aksoy & Sait Genar Yaldiz & Isilsu Yildirim & Gulsah Keklik, 2022. "Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2379-2405, April.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05141-6
    DOI: 10.1007/s11069-021-05141-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05141-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05141-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    2. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    3. Richarde Silva & Celso Santos & Madalena Moreira & João Corte-Real & Valeriano Silva & Isabella Medeiros, 2015. "Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1205-1221, June.
    4. Demetris Koutsoyiannis & George Baloutsos, 2000. "Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 22(1), pages 29-48, July.
    5. Guili Sun & Yaning Chen & Weihong Li & Cunde Pan & Jiang Li & Yuhui Yang, 2013. "Spatial distribution of the extreme hydrological events in Xinjiang, north-west of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 483-495, June.
    6. Nurünnisa Usul & Burak Turan, 2006. "Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 39(2), pages 213-229, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ahmad & Zulfiqar Ali & Maryam Ilyas & Muhammad Mohsin & Rizwan Niaz, 2023. "A Common Factor Analysis Based Data Mining Procedure for Effective Assessment of 21st Century Drought under Multiple Global Climate Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4787-4806, September.
    2. Mehmet Seren Korkmaz & Emir Toker & Ahmet Duran Şahin, 2023. "Comprehensive Analysis of Extreme Meteorological Conditions for the Safety and Reliability of Floating Photovoltaic Systems: A Case on the Mediterranean Coast," Sustainability, MDPI, vol. 15(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richarde Marques Silva & Celso Augusto Guimarães Santos & Jorge Flávio Cazé Braga Costa Silva & Alexandro Medeiros Silva & Reginaldo Moura Brasil Neto, 2020. "Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 829-849, July.
    2. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    3. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    4. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    5. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    6. Lan-Fen Chu & Michael McAleer & Szu-Hua Wang, 2012. "Statistical Modelling of Recent Changes in Extreme Rainfall in Taiwan," Documentos de Trabajo del ICAE 2012-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    8. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    9. Uilson Ricardo Venâncio Aires & Demetrius David Silva & Michel Castro Moreira & Carlos Antônio Alvares Soares Ribeiro & Celso Bandeira de Melo Ribeiro, 2020. "The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1933-1949, April.
    10. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    11. Dario Camuffo & Antonio della Valle & Francesca Becherini & Valeria Zanini, 2020. "Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data," Climatic Change, Springer, vol. 162(2), pages 923-942, September.
    12. Long Wan & Jinxing Zhou & Hongyan Guo & Ming Cui & Yuguo Liu, 2016. "Trend of water resource amount, drought frequency, and agricultural exposure to water stresses in the karst regions of South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 23-42, January.
    13. Ijaz Ahmad & Li Wang & Faisal Ali & Fan Zhang, 2022. "Spatiotemporal Patterns of Extreme Precipitation Events over Jhelum River Basin," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    14. Tweneboah Senzu, Emmanuel, 2020. "Modern currency exchange rate behaviour and proposed trend-like forecasting model," MPRA Paper 99933, University Library of Munich, Germany.
    15. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    16. Vishnu Prasad Pandey & Dibesh Shrestha & Mina Adhikari & Shristi Shakya, 2020. "Streamflow Alterations, Attributions, and Implications in Extended East Rapti Watershed, Central-Southern Nepal," Sustainability, MDPI, vol. 12(9), pages 1-30, May.
    17. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    18. Elton Luis Silva Abel & Rafael Coll Delgado & Regiane Souza Vilanova & Paulo Eduardo Teodoro & Carlos Antonio Silva Junior & Marcel Carvalho Abreu & Guilherme Fernando Capristo Silva, 2021. "Environmental dynamics of the Juruá watershed in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6769-6785, May.
    19. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    20. Zhiqiang Pang & Zhaoxu Wang, 2021. "Temperature trend analysis and extreme high temperature prediction based on weighted Markov Model in Lanzhou," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 891-906, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05141-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.