IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i3d10.1007_s11069-021-04535-w.html
   My bibliography  Save this article

Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy

Author

Listed:
  • Fabio Cian

    (Ca’ Foscari University Venice)

  • Carlo Giupponi

    (Ca’ Foscari University Venice)

  • Mattia Marconcini

    (German Aerospace Center–DLR)

Abstract

Climate sciences foresee a future where extreme weather events could happen with increased frequency and strength, which would in turn increase risks of floods (i.e. the main source of losses in the world). The Mediterranean basin is considered a hot spot in terms of climate vulnerability and risk. The expected impacts of those events are exacerbated by land-use change and, in particular, by urban growth which increases soil sealing and, hence, water runoff. The ultimate consequence would be an increase of fatalities and injuries, but also of economic losses in urban areas, commercial and productive sites, infrastructures and agriculture. Flood damages have different magnitudes depending on the economic value of the exposed assets and on level of physical contact with the hazard. This work aims at proposing a methodology, easily customizable by experts’ elicitation, able to quantify and map the social component of vulnerability through the integration of earth observation (EO) and census data with the aim of allowing for a multi-temporal spatial assessment. Firstly, data on employment, properties and education are used for assessing the adaptive capacity of the society to increase resilience to adverse events, whereas, secondly, coping capacity, i.e. the capacities to deal with events during their manifestation, is mapped by aggregating demographic and socio-economic data, urban growth analysis and memory on past events. Thirdly, the physical dimension of exposed assets (susceptibility) is assessed by combining building properties acquired by census data and land-surface characteristics derived from EO data. Finally, the three components (i.e. adaptive and coping capacity and susceptibility) are aggregated for calculating the dynamic flood vulnerability index (FVI). The approach has been applied to Northeast Italy, a region frequently hit by floods, which has experienced a significant urban and economic development in the past decades, thus making the dynamic study of FVI particularly relevant. The analysis has been carried out from 1991 to 2016 at a 5-year steps, showing how the integration of different data sources allows to produce a dynamic assessment of vulnerability, which can be very relevant for planning in support of climate change adaptation and disaster risk reduction.

Suggested Citation

  • Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04535-w
    DOI: 10.1007/s11069-021-04535-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04535-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04535-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    2. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    3. Masozera, Michel & Bailey, Melissa & Kerchner, Charles, 2007. "Distribution of impacts of natural disasters across income groups: A case study of New Orleans," Ecological Economics, Elsevier, vol. 63(2-3), pages 299-306, August.
    4. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    5. repec:idb:brikps:publication-detail,7101.html?id=68568 is not listed on IDEAS
    6. Karen O'Brien & Siri Eriksen & Lynn P. Nygaard & Ane Schjolden, 2007. "Why different interpretations of vulnerability matter in climate change discourses," Climate Policy, Taylor & Francis Journals, vol. 7(1), pages 73-88, January.
    7. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    8. Reinhard Mechler & Laurens Bouwer, 2015. "Understanding trends and projections of disaster losses and climate change: is vulnerability the missing link?," Climatic Change, Springer, vol. 133(1), pages 23-35, November.
    9. Carlo Giupponi & Vahid Mojtahed & Animesh K. Gain & Stefano Balbi, 2013. "Integrated Assessment of Natural Hazards and Climate Change Adaptation: I. The KULTURisk Methodological Framework," Working Papers 2013:06, Department of Economics, University of Venice "Ca' Foscari".
    10. Dragana Bojovic & Carlo Giupponi & Hermann Klug & Lucia Morper-Busch & George Cojocaru & Richard Schörghofer, 2018. "An online platform supporting the analysis of water adaptation measures in the Alps," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 214-229, January.
    11. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    12. Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.
    13. W. Neil Adger & Tara Quinn & Irene Lorenzoni & Conor Murphy & John Sweeney, 2013. "Changing social contracts in climate-change adaptation," Nature Climate Change, Nature, vol. 3(4), pages 330-333, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Yang & Shili Guo & Xin Deng & Wei Wang & Dingde Xu, 2021. "Study on Livelihood Vulnerability and Adaptation Strategies of Farmers in Areas Threatened by Different Disaster Types under Climate Change," Agriculture, MDPI, vol. 11(11), pages 1-21, November.
    2. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    2. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    4. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    5. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    6. M. Rezaul Islam, 2018. "Climate Change, Natural Disasters and Socioeconomic Livelihood Vulnerabilities: Migration Decision Among the Char Land People in Bangladesh," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(2), pages 575-593, April.
    7. Vahid Mojtahed & Carlo Giupponi & Claudio Biscaro & Animesh K. Gain & Stefano Balbi, 2013. "Integrated Assessment of Natural Hazards and Climate-Change Adaptation: II. The SERRA Methodology," Working Papers 2013:07, Department of Economics, University of Venice "Ca' Foscari".
    8. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    9. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    10. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    11. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2012. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 615-639, October.
    12. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    13. Balbi Stefano & Giupponi Carlo & Mojtahed Vahid & Olschewski Roland, 2015. "The Total Cost of Water-Related Disasters," Review of Economics, De Gruyter, vol. 66(2), pages 225-252, August.
    14. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    15. Biola K. Badmos & Ademola A. Adenle & Sampson K. Agodzo & Grace B. Villamor & Daniel K. Asare-Kyei & Laouali M. Amadou & Samuel N. Odai, 2018. "Micro-level social vulnerability assessment towards climate change adaptation in semi-arid Ghana, West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2261-2279, October.
    16. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2013. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 497-521, January.
    17. Shepherd, Philippa M. & Dissart, Jean-Christophe, 2022. "Reframing vulnerability and resilience to climate change through the lens of capability generation," Ecological Economics, Elsevier, vol. 201(C).
    18. D. J. Roncancio & A. C. Nardocci, 2016. "Social vulnerability to natural hazards in São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1367-1383, November.
    19. Sungyoon Lee & Jennifer Dodge & Gang Chen, 2022. "The cost of social vulnerability: an integrative conceptual framework and model for assessing financial risks in natural disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 691-712, October.
    20. Edris Alam & Md Sabur Khan & Roquia Salam, 2022. "Vulnerability assessment based on household views from the Dammar Char in Southeastern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 329-344, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04535-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.