IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i3d10.1007_s11069-020-04153-y.html
   My bibliography  Save this article

Identification of rainfall and atmospheric patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil)

Author

Listed:
  • Fabricio Polifke Silva

    (Universidade Federal do Rio de Janeiro - UFRJ
    Universidade Iguaçu - UNIG)

  • Otto Corrêa Rotunno Filho

    (Universidade Federal do Rio de Janeiro - UFRJ)

  • Maria Gertrudes Alvarez Justi da Silva

    (Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF)

  • Rafael João Sampaio

    (Universidade Federal do Rio de Janeiro - UFRJ)

  • Gisele Dornelles Pires

    (Universidade Federal do Rio de Janeiro - UFRJ
    Universidade Iguaçu - UNIG)

  • Afonso Augusto Magalhães Araújo

    (Universidade Federal do Rio de Janeiro - UFRJ)

Abstract

Heavy rainfall events can result in natural disasters and cause innumerous impacts on society. These consequences can be mitigated by preventive measures applications which are interdisciplinary and integrated areas of study. From the meteorological point of view, preventive measures can be aided by better knowledge of extreme phenomena, the atmospheric patterns related and their monitoring by operational forecasters. The Petropolis city, located in a mountainous region Rio de Janeiro state, Brazil, is prone to heavy rainfall events, leading to the River flooding, and in the extreme events the simultaneously landslides occurrence and loss of life. In that context, this study endeavored to characterize the rainfall and atmospheric parameters which triggered heavy rainfall records and the corresponding Quitandinha River flooding episodes. More specifically, we analyzed events from the time period between January 2013 and December 2014 using observational, reanalysis and radar data. We hope that the overall obtained results could provide quantitative and qualitative aid to the operational forecasters and also the decision makers. We noticed that categorized flooding events mostly related to the South Atlantic Convergence Zone (SACZ) configurations and frontal systems (FS) passage, with a smaller percentage related to local convective storms (CS). The clustering analyses indicated three groups of homogenous precipitation, with higher values over the downstream region progressively decreasing in the upstream direction. The atmospheric parameters showed a pattern of wind change direction in the lower atmospheric levels, a vertical dynamic coupling and moisture availability to support the heavy rainfall development.

Suggested Citation

  • Fabricio Polifke Silva & Otto Corrêa Rotunno Filho & Maria Gertrudes Alvarez Justi da Silva & Rafael João Sampaio & Gisele Dornelles Pires & Afonso Augusto Magalhães Araújo, 2020. "Identification of rainfall and atmospheric patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3745-3764, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04153-y
    DOI: 10.1007/s11069-020-04153-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04153-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04153-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Tomasz Bryndal & Paweł Franczak & Rafał Kroczak & Wacław Cabaj & Adam Kołodziej, 2017. "The impact of extreme rainfall and flash floods on the flood risk management process and geomorphological changes in small Carpathian catchments: a case study of the Kasiniczanka river (Outer Carpathi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 95-120, August.
    3. Nina S. Oakley & Jeremy T. Lancaster & Michael L. Kaplan & F. Martin Ralph, 2017. "Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 327-354, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryota Nakamura & Martin Mäll & Tomoya Shibayama, 2019. "Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 391-422, October.
    2. Na Li & Shenglian Guo & Feng Xiong & Jun Wang & Yuzuo Xie, 2022. "Comparative Study of Flood Coincidence Risk Estimation Methods in the Mainstream and its Tributaries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 683-698, January.
    3. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    4. Ismallianto Isia & Tony Hadibarata & Muhammad Noor Hazwan Jusoh & Rajib Kumar Bhattacharjya & Noor Fifinatasha Shahedan & Norma Latif Fitriyani & Muhammad Syafrudin, 2023. "Identifying Factors to Develop and Validate Social Vulnerability to Floods in Malaysia: A Systematic Review Study," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    5. Fabricio Polifke Silva & Alfredo Silveira Silva & Maria Gertrudes Alvarez Justi Silva & Gisele Dornelles Pires, 2022. "Assessment of WRF numerical model forecasts using different lead time initializations during extreme precipitation events over Macaé city, Rio de Janeiro (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 695-718, January.
    6. Bingyao Li & Jingming Hou & Yongyong Ma & Ganggang Bai & Tian Wang & Guoxin Xu & Binzhong Wu & Yongbao Jiao, 2022. "A coupled high-resolution hydrodynamic and cellular automata-based evacuation route planning model for pedestrians in flooding scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 607-628, January.
    7. Hye-Kyoung Lee & Young-Hoon Bae & Jong-Yeong Son & Won-Hwa Hong, 2020. "Analysis of Flood-Vulnerable Areas for Disaster Planning Considering Demographic Changes in South Korea," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    8. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    9. Huafei Yu & Yaolong Zhao & Yingchun Fu & Le Li, 2018. "Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    10. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Tomasz Bryndal, 2023. "Changes in the Active Drainage Network and Their Impact on the Hydrological Response and Flood Risk Management Process: A Case Study for a Flysch Mountain Catchment," Resources, MDPI, vol. 12(12), pages 1-21, December.
    12. Wael M. Elsadek & Mona G. Ibrahim & Wael Elham Mahmod & Shinjiro Kanae, 2019. "Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: case study of Wadi Qena watershed, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 739-767, February.
    13. Davor Kvočka & Reza Ahmadian & Roger A Falconer, 2018. "Predicting Flood Hazard Indices in Torrential or Flashy River Basins and Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2335-2352, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04153-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.